
Copyright © 2005-2024. Cloud Software Group, Inc. All Rights Reserved.

JasperReports® Server
Authentication Cookbook
Version 9.0.0 | January 2024

JasperReports® Server Authentication Cookbook

2 | Contents

Contents
Contents 2

Introduction 7
JasperReports Server Version Supported 8

Spring Security 9

Terminology 9

Authentication in JasperReports Server 11
Locating and Working With Sample Files 12
Deploying Configuration Files 12

WEB-INF Directory Location 12

Configuring Logging for Debugging 14

Default Internal Authentication 17

Organizations and Users in JasperReports Server 18
Multiple Organizations in JasperReports Server 19

Synchronization of External Users 20

Synchronization of Roles 22

Initialization of JasperReports Server for External Users 23

Maintenance of External Users 24

Internal Users 30

LDAP Authentication 31
Overview of External LDAP Authentication 32

Configuring JasperReports Server for LDAP Authentication 34

Overview of LDAP Beans 35

Setting the LDAP Connection Parameters 37
Setting LDAP Connection Parameters in default_master.properties 38

Setting LDAP Connection Parameters Manually 39

JasperReports® Server Authentication Cookbook

3 | Contents

Performing LDAP User Search 40
Configuring JSBindAuthenticator 40

Alternative to Bind Authentication 41

Specifying userDnPatterns Parameters 42

Specifying userSearch Parameters 43

LDAP Search for Multiple Organizations 43

Mapping the User Roles 45
Configuring the User Role Mapping 45

Mapping Roles to System Roles 47

Setting Default Roles 50

Avoiding Role Collisions 51

Restricting the Mapping to Whitelisted Roles 51

Supporting Additional Characters in Role Names 52

Mapping the User Organization 52
Mapping to Multiple Organizations 53

Mapping to a Single Organization 58

Setting Up Multiple Providers 59

Authentication with Microsoft Active Directory 60
Configuring User Search for Active Directory 60

Configuring the Spring Referral Property 61

Troubleshooting LDAP Configurations 61
Planning for Troubleshooting 62

"Invalid Credentials Supplied" Errors 62

Login Displays Security Check Page 70

Adding a Custom Processor 71

Restarting JasperReports Server 72

CAS Authentication 73
Overview of External CAS Authentication 74

CAS Server for Testing 78

Configuring Java to Trust the CAS Certificate 79

Configuring JasperReports Server for CAS Authentication 80

JasperReports® Server Authentication Cookbook

4 | Contents

Beans to Configure 81

Setting CAS Authentication Properties 81
Configuring casServiceProperties 82

Configuring externalAuthProperties 82

Mapping the User Roles 83
Defining Static Roles 83

Retrieving User Roles from an External Data Source 84

Setting Default Roles 86

Avoiding Role Collisions 86

Restricting the Mapping to Whitelisted Roles 87

Supporting Additional Characters in Role Names 87

Setting the User Organization 88
Mapping to Multiple Organizations 88

Mapping to a Single Organization 90

Adding a Custom Processor 91

Customizing the JasperReports Server Interface for CAS 91

Restarting JasperReports Server 92

External Database Authentication 93
Overview of External Database Authentication 93

Configuring JasperReports Server for External Database Authentication 95

Beans to Configure 96

Setting the Database Connection Parameters 97
Setting Database Connection Parameters in default_master.properties 98

Setting Database Connection Parameters Manually 99

Configuring User Authentication and Authorization via Database Queries 100

Setting the Password Encryption 101

Mapping User Roles 102
Retrieving Roles from the External Database 102

Defining Static Roles 103

Setting Default Roles 104

Avoiding Role Collisions 105

JasperReports® Server Authentication Cookbook

5 | Contents

Restricting the Mapping to Whitelisted Roles 105

Supporting Additional Characters in Role Names 106

Setting the User Organization 106
Setting Up Default Admins for Organizations 107

Mapping Organization Names 109

Specifying a Single Organization 110

Adding a Custom Processor 111

Configuring the Login Page for a Single-Organization Deployment 111

Restarting JasperReports Server 111

Token-based Authentication 113
Overview of Token-based Authentication 113

Configuring JasperReports Server for Token-based Authentication 115

Overview of Token-based Authentication Beans 116

Configuring the Token 117
Security of the Token 117

proxyPreAuthenticatedProcessingFilter bean 118

preAuthenticatedUserDetailsService 120

User Roles 123
Mapping User Roles 123

Defining Static Roles 126

Mapping the User Organization 127
Setting Up Default Admins for Organizations 128

Mapping Organization Names 130

Specifying a Single Organization 131

Adding a Custom Processor 132

Restarting JasperReports Server 132

OAuth Authentication 133
OAuth Authentication Flow in JasperReports Server 133

Configuring OAuth 135
How to Enable OAuth in JasperReports Server 135

JasperReports® Server Authentication Cookbook

6 | Contents

Configuring JasperReports Server to use OAuth Authentication 136

OAuth Configuration Properties 136

Sample Integration with OAuth2 Provider 141

Mapping External OAuth Roles to Internal JasperReports Server Roles 143

Placing a User into an Organizational Hierarchy 144

Mapping User Profile Attributes 145

Defining Administrators 145

Advanced Topics 146
Internal Authentication Beans 146

External Authentication Framework 148
External Authentication Beans 148

Creating a Custom Processor 150

Authentication Based on Request 152

Other Customizations 154

Jaspersoft Documentation and Support Services 155

Legal and Third-Party Notices 157

JasperReports® Server Authentication Cookbook

7 | Introduction

Introduction
JasperReports® Server builds on JasperReports® Library as a comprehensive family of
Business Intelligence (BI) products, providing robust static and interactive reporting, report
server, and data analysis capabilities. These capabilities are available as either stand-alone
products, or as part of an integrated end-to-end BI suite utilizing common metadata and
provide shared services, such as security, a repository, and scheduling. The server exposes
comprehensive public interfaces enabling seamless integration with other applications and
the capability to easily add custom functionality.

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you
from using them. To find out what you're licensed to use, or to upgrade your license, contact
Jaspersoft.

The heart of the Jaspersoft® BI Suite is the server, which provides the ability to:

• Easily create new reports based on views designed in an intuitive, web-based, drag
and drop Ad Hoc Editor.

• Efficiently and securely manage many reports.

• Interact with reports, including sorting, changing formatting, entering parameters,
and drilling on data.

• Schedule reports for distribution through email and storage in the repository.

• Arrange reports and web content to create appealing, data-rich Jaspersoft
Dashboards that quickly convey business trends.

For users interested in multi-dimensional modeling, we offer Jaspersoft® OLAP, which runs
as part of the server.

While the Ad Hoc Editor lets users create simple reports, more complex reports can be
created outside of the server. You can either use Jaspersoft® Studio or manually write
JRXML code to create a report that can be run in the server. We recommend that you use
Jaspersoft Studio unless you have a thorough understanding of the JasperReports file
structure.

You can use the following sources of information to learn about JasperReports Server:

JasperReports® Server Authentication Cookbook

8 | Introduction

• Our core documentation describes how to install, administer, and use JasperReports
Server and Jaspersoft Studio. Core documentation is available as PDFs in the doc
subdirectory of your JasperReports Server installation. You can also access PDF and
HTML versions of these guides online from the Documentation section of the
Jaspersoft Community website.

• Our Ultimate Guides document advanced features and configuration. They also
include best practice recommendations and numerous examples. You can access
PDF and HTML versions of these guides online from the Documentation section of
the Jaspersoft Community website.

• Our Online Learning Portal lets you learn at your own pace, and covers topics for
developers, system administrators, business users, and data integration users. The
Portal is available online from the Professional Services section of our website.

• Our free samples, which are installed with JasperReports Library, Jaspersoft Studio,
and JasperReports Server, are available and documented online. Please visit our
GitHub repository.

• If you have a subscription to our professional support offerings, please contact our
Technical Support team when you have questions or run into difficulties. They're
available on the web at https://www.jaspersoft.com/support.

JasperReports Server is a component of both a community project and commercial
offerings. Each integrates the standard features such as security, scheduling, a web services
interface, and much more for running and sharing reports. Commercial editions provide
additional features, including Ad Hoc views and reports, advanced charts, dashboards,
Domains, auditing, and a multi-organization architecture for hosting large BI deployments.

This chapter contains the following sections:

• JasperReports Server Version Supported

• Spring Security

• Terminology

JasperReports Server Version Supported
This guide applies to the community and commercial editions of JasperReports Server
9.0.0, the most recent version at publication time. If you're running an earlier version of
JasperReports Server, refer to the corresponding version of the Authentication Cookbook.

http://community.jaspersoft.com/documentation
http://community.jaspersoft.com/documentation
https://www.jaspersoft.com/getting-started
http://www.jaspersoft.com/
https://github.com/Jaspersoft/jasperreports
https://www.jaspersoft.com/support

JasperReports® Server Authentication Cookbook

9 | Introduction

Spring Security
JasperReports Server currently uses Spring Security 5.7. If you are upgrading from an earlier
version of JasperReports Server, you may need to migrate your configuration files. See the
JasperReports Server External Authentication Cookbook, available from the support portal or the
community website.

JasperReports Server relies on Spring Security 5.7 to provide the mechanisms that
authenticate and authorize users. If you plan to make extensive customizations, we
recommend that you delve more deeply into Spring Security by visiting its project pages
and participating in its community. For more information, see the Spring Security website
Spring Security website and refer to the documentation for Spring Security 5.7.

Terminology
This guide uses the following terms in very specific ways.

l Users: JasperReports Server users are either people who access the web-based
interface or applications that access the same content through web services.
Authentication is slightly different for each type of access but operates on the same
principles. For simplicity, this guide considers users to be people accessing the web-
based interface.

l Internal database: User accounts are created by administrators and stored in a
private, internal database. For example, when you install JasperReports Server with
the default settings, it requires a PostgreSQL database server where it stores the
internal database tables containing user information. The internal database is
independent of databases that store your operational data, although it may be on
the same database server.

l Authentication: Authentication is the verification of a user’s identity to allow access
to JasperReports Server. By default, anonymous access is disabled, and all users
must present valid credentials to log in: a user ID, a password, and in certain cases
an organization ID. Authentication is more than gathering the user credentials, it's a
process that ensures that every page is secure — either displayed to a verified user or
denied until valid credentials are provided.

l External authentication: External authentication is the process of gathering and
verifying user credentials through a third-party application, for example, a corporate
LDAP directory. The external application is called an authority because it's trusted to

http://community.jaspersoft.com/
https://spring.io/projects/spring-security
https://docs.spring.io/spring-security/reference/5.7/index.html

JasperReports® Server Authentication Cookbook

10 | Introduction

contain valid user information. The process of external authentication depends on
the nature of the external authority, and the various configurations support different
use scenarios. For example, with simple external authentication, users log into the
JasperReports Server page, but their credentials are verified externally; in a single
sign-on configuration, the user may log into another application, then navigate to
JasperReports Server without seeing the server’s login page.

l Principal object: Authentication happens only once at the beginning of the user’s
session. After authentication, the user’s session is represented by an in-memory
instance referred to as the principal object. The existence of the principal object
determines that the user is logged on and can access pages throughout the
application. The principal object also stores the user's roles and organization ID,
which are required for authorization within JasperReports Server.

l Authorization: Authorization is the verification of a user’s roles and organization ID to
access features of the server, resources in the repository, and, in some cases, data.
For every page the user requests, the server determines which menu items,
resources, and report contents the user can access, based on the principal object.
Authorization happens every time a user accesses a resource.
In the JasperReports Server architecture, which is based on the Spring Framework
and Spring Security, authentication may be configured through an external authority,
but authorization is always performed by internal mechanisms. Part of configuring
external authentication is to define a mapping of external roles and organization IDs
into the principal object so authorization can proceed internally. Profile attributes
can also be mapped from the external authority; however, you need to write a
custom processor to do so. See Creating a Custom Processor.

l Synchronization: When an external session is established, the user's current
organization and roles are mapped into the principal object. The first time an
external user logs in, the synchronization mechanism creates the user's organization
folder, roles and user account in the internal database. The server uses these
structures to enforce authorization for the external user just as for internally-defined
users. The synchronization mechanism updates the roles every time the external user
logs in, so that the internal database reflects the contents of the external authority.

JasperReports® Server Authentication Cookbook

11 | Authentication in JasperReports Server

Authentication in JasperReports Server
This cookbook describes how to configure JasperReports Server to use external
authentication in place of the built-in user authentication. The benefits of external
authentication include:

• Centralized identity management within your enterprise.

• Single sign-on capabilities if the authentication mechanism supports it.

For deployments that include the Jaspersoft OLAP component within JasperReports Server,
external authentication applies transparently to Jaspersoft OLAP users.

This guide covers the following authentication mechanisms:

• Lightweight Directory Access Protocol (LDAP). See LDAP Authentication.

• Central Authentication Service (CAS). See CAS Authentication.

• Authentication via an external database. See External Database Authentication.

• Authentication when the user has already been reliably authenticated by another
external system. See Token-based Authentication.

You can also create custom code to run on the server after the user has been
authenticated, or use custom authentication providers. See Advanced Topics for an
overview of these topics. Details are beyond the scope of this guide.

The procedures in this guide assume you're familiar with JasperReports Server installation,
deployment, and administration. You must have system administrator privileges within
JasperReports Server and its application server and read and write access to their files on the
host.

If you're setting up external authentication, you may need to understand how
JasperReports Server performs internal authentication, or how external roles and
organizations in JasperReports Server are created when external authorization has been
set up. This chapter gives background information that can help you configure external
authentication correctly.

This chapter contains the following sections:

• Locating and Working With Sample Files

• Default Internal Authentication

JasperReports® Server Authentication Cookbook

12 | Authentication in JasperReports Server

• Organizations and Users in JasperReports Server

Locating and Working With Sample Files
All Spring Security configuration files are located in the JasperReports Server web
application deployed in an application server. In general, all of the sample files for external
authentication are located in the <js-install>/samples/externalAuth-sample-config directory.
Unless otherwise specified, all file names mentioned in this guide are located in this
directory.

Deploying Configuration Files
To configure JasperReports Server to work with external authentication, you need to create
and deploy an external configuration file as follows:

1. Create or copy a file and name it in the form applicationContext-<customName>.xml,
for example, applicationContext-externalAuth-LDAP.xml. JasperReports Server
includes sample files for some implementations, for example, LDAP, CAS, and an
external JDBC database, in the <js-install>/samples/externalAuth-sample-config/
directory.

2. Edit the file and create and configure the bean properties correctly for your
deployment, as described in the following sections.

3. Place the correctly configured applicationContext-<customName>.xml file in the <js-
webapp>/WEB-INF directory.

WEB-INF Directory Location
Depending on your deployment and your needs, there are several ways to work with
configuration files:

Deployment <js-webapp>/WEB-INF File Location

Installed server Once you've installed your server, either through a platform installer or any

JasperReports® Server Authentication Cookbook

13 | Authentication in JasperReports Server

Deployment <js-webapp>/WEB-INF File Location

other deployment, the configuration files are deployed in the application
server. The location depends on the application server where you installed
JasperReports Server. If you used the bundled Apache Tomcat application
server, the modified configuration files should be placed in:

<js-webapp>/WEB-INF = <js-install>/apache-tomcat/webapps/jasperserver[-
pro]/WEB-INF

After modifying the configuration files, restart the application server to use
the settings.

WAR file
distribution

When you download the WAR file distribution, you can customize your
deployment of JasperReports Server and possibly install it on several
machines. You can find the WAR file in the following location:

<js-webapp> = <js-install>/jasperserver[-pro].war

After modifying the WAR file distribution, you need to redeploy it to your
application server, as described in the JasperReports Server Installation
Guide. But every time you redeploy your modified WAR file, external
authentication is pre-configured.

Source code The JasperReports Server source code contains the XML source of the
configuration files. If you maintain other customizations in the source code,
you can modify the configuration files for external authentication. The
modified configuration files for source code are placed in:

<js-webapp>/WEB-INF = <js-src>/jasperserver/jasperserver-
war/src/main/webapp/WEB-INF

When building the source, these files are copied into the WAR file that you
must then deploy into a running application server. See the JasperReports
Server Source Build Guide for more information.

When working with the WAR file distribution or source code, you usually modify the files in an
installed server for testing. But after testing, you copy the changes into your WAR file or
source code.

When working with the WAR file distribution or servers installed in application servers other
than Apache Tomcat, the WAR file is kept as a single archive file from which you must
extract, modify and replace the files. The following code sample shows one way to do this
from the command line.

JasperReports® Server Authentication Cookbook

14 | Authentication in JasperReports Server

cd <js-webapp>
"%JAVA_HOME%\bin\jar" xf jasperserver[-pro].war <path/filename>
<edit> <path\filename>
"%JAVA_HOME%\bin\jar" uf jasperserver[-pro].war <path/filename>
delete <path\filename>

In this sample:

l <path/filename> refers to the relative path and name of the file to modify within the
WAR file

l -pro is part of the WAR file name if you installed a commercial edition of
JasperReports Server.

Configuring Logging for Debugging
If your connection is failing, for example, with an “Invalid credentials supplied” error, and
you cannot find information in the JasperReports Server logs, you may want to enable
logging for Spring Security or JasperReports Server external authentication.

To enable logging, add the corresponding line to the <js-webapp>/WEB-INF/log4j.properties
file, in the form:

log4j.logger.<logger-classname> = <log-level>, <output-type>

For example:

log4j.logger.org.springframework.security=DEBUG, stdout, fileout

You must restart the server for your changes to take effect. For more information about log
configuration, see the JasperReports Server Administrator Guide.

You can reduce impact on performance by restricting logging to functionality that you are
interested in, for example, to a subset of Spring Security instead of all of Spring Security.
Useful Logger Classnames for External Authentication shows some logger classnames
commonly used when debugging authentication.

JasperReports® Server Authentication Cookbook

15 | Authentication in JasperReports Server

Functionality
to Log

Logger Classname

Spring
Security

org.springframework.security

Subset of
Spring
Security
related to
LDAP

org.springframework.security.ldap

Useful subsets
of Spring
Security's
LDAP logging

org.springframework.security.ldap.userdetails.LdapAuthoritiesPopul
ator
org.springframework.security.ldap.userdetails.LdapUserDetailsServi
ce org.springframework.security.ldap.search.LdapUserSearch
org.springframework.security.ldap.search.FilterBasedLdapUserSearch
org.springframework.security.ldap.SpringSecurityLdapTemplate

Other LDAP-
related Spring
Security
loggers

org.springframework.security.providers.ldap.LdapAuthenticationProv
ider
org.springframework.security.userdetails.ldap.LdapUserDetailsMappe
r
org.springframework.security.providers.ldap.authenticator.BindAuth
enticator

Subset of
Spring related
to LDAP

org.springframework.ldap

CAS org.jasig.cas

JasperReports
Server
external
authentication
API

com.jaspersoft.jasperserver.multipleTenancy.security.externalAuth

Subset of
external

com.jaspersoft.jasperserver.api.security.externalAuth

Useful Logger Classnames for External Authentication

JasperReports® Server Authentication Cookbook

16 | Authentication in JasperReports Server

Functionality
to Log

Logger Classname

authentication
API related to
single tenancy

Subset of
external
authentication
API related to
token-based
authentication

com.jaspersoft.jasperserver.api.security.externalAuth.preauth

Subset of
external
authentication
API related to
external
database
authentication

com.jaspersoft.jasperserver.api.security.externalAuth

Enabling a logger and a sublogger together creates duplicate entries in the logs. For example,
org.springframework.security and org.springframework.security.ldap creates duplicate entries.

JasperReports® Server Authentication Cookbook

17 | Authentication in JasperReports Server

Default Internal Authentication
The following diagram shows the general steps involved in JasperReports Server’s default
internal authentication:

Figure 1: Steps of Internal Authentication

The interaction between the user’s browser and JasperReports Server includes these
general steps:

1. An unauthenticated user requests any page in JasperReports Server.
Often, users bookmark the login page and begin directly at Step 3, but this step
covers the general case and secures every possible access to the server. For example,
this step applies when a user clicks the page of an expired session or if a user enters
the direct URL to a report in the repository.

2. JasperReports Server detects that the user is not logged in and replies with a redirect
to the login page.
For convenience, the server includes the original URL in the login screen request so
that the user goes directly to the requested page after logging in.

3. The user enters a username, password, and possibly an organization ID.
JasperReports Server compares these credentials with the existing user accounts in
the internal user database, and if they are valid, creates a principal object. The user
is now authenticated, and the principal object represents the user session, including
any roles found in the user database.

4. JasperReports Server sends the requested content to the user, or if none was

JasperReports® Server Authentication Cookbook

18 | Authentication in JasperReports Server

specified, the home page.
Content that is sent to the user is subject to authorization. For example the home
page has different options for administrators than for end-users, as determined by
the roles of the user in the principal object. If the user is viewing the repository, the
folders and objects returned depend on the organization ID and roles in the principal
object.

Organizations and Users in JasperReports
Server
When performing external authentication, JasperReports Server obtains all the information
about a user from the external authority. In order to create and enforce permissions,
JasperReports Server must store the information about users, roles, and organizations in
the internal database. So for each externally-defined user, role, and organization, the
server creates a local user account, role definitions, and organization folders. This process
is called synchronization.

The users and roles defined through external authentication appear in the management
interface, but are labeled as “external.” Administrators can view and delete the external
users and roles, but the synchronization will re-create the necessary users and roles as long
as external authentication is configured. External user accounts and roles are placeholders
for use by the synchronization and permissions mechanisms. Administrators can disable
specific external users in JasperReports Server to prevent those external users from logging
into JasperReports Server.

There are three important aspects to managing external users, roles, and organizations:

l The synchronization of external users, roles, and organizations with the internal
database is automatic once external authentication is configured. This is done by the
ExternalDataSynchronizer bean. For more information, see Advanced Topics.

l Permissions in the repository must be initialized manually for the external roles after
their creation.

l Maintenance of the external users is necessary only when creating or deleting roles,
when creating new organizations from an external authority, or when disabling
external users in JasperReports Server.

When you deploy JasperReports Server in a production environment, you need to set up
role permissions before your users access the server. However, you cannot create external

JasperReports® Server Authentication Cookbook

19 | Authentication in JasperReports Server

roles or organizations directly; you can create them only by logging in as an external user
with the desired roles and permissions. To set up role permissions, you must understand
the synchronization process. For maintenance, you must be aware of how changes in the
external authority impact permissions in JasperReports Server. These processes are
explained in the following sections.

Multiple Organizations in JasperReports Server
This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you
from using them. To find out what you're licensed to use, or to upgrade your license, contact
Jaspersoft.

Some commercial editions allow several distinct organizations to coexist within the same
server instance. Each organization, also known as a tenant, has its own users, roles, and
possibly a hierarchy of sub-organizations, each of which is invisible to other organizations.
For information about deploying multiple organizations, see the JasperReports Server
Administrator Guide.

When you deploy JasperReports Server, there are three distinct cases with respect to the
organization architecture:

Edition and Usage Impact on External Authentication Configuration

Commercial edition
with multiple
organizations

Configuring external authentication for multiple organizations requires
extra steps. In the chapter for each authentication mechanism, look for
the additional section on mapping the organization. All other
configurations for external authentication remain the same.

Commercial edition
with no
organizations

When JasperReports Server has the organization architecture, but only
implements a single default organization, the organization ID is
mapped automatically. You can skip any section that refers to mapping
the organization ID.

Community Project JasperReports Server Community Project does not use the organization
architecture. You can skip any section that refers to mapping the
organization ID.

JasperReports® Server Authentication Cookbook

20 | Authentication in JasperReports Server

Another name for multiple organizations is multi-tenancy, sometimes abbreviated mt in file and
bean names. However, the mt prefix appears in both community and commercial editions.

Default Admins in Organizations
You can set one or more default admins that are created when you create a new
organization using external authentication. The sample files are set up to create a
jasperadmin in each new organization by default. For information on how to customize
default admin users, see the section on organizations in the chapter corresponding to your
authentication mechanism.

Default admins for new organizations can be customized only when using external authentication.
When you create organizations manually, the jasperadmin user is created.

Synchronization of External Users
When a user is authenticated by an external authority, JasperReports Server initializes its
session principal object, which contains the username, role names, and organization ID, if
applicable. The ExternalDataSynchronizer uses this information to automatically update or
create corresponding structures in the internal database:

l If the internal database has no organization with the user's organization ID,
JasperReports Server creates it with the templates currently defined in the
repository. For LDAP authentication, organization hierarchies are created for users.

l Roles can be mapped to external or internal roles.

o When mapping a role to an external role, the role name is compared to existing
external roles. If the role doesn't exist, it's created as an external role. See
Synchronization of Roles for details about role creation.

o When mapping a role to an internal role, the role name is compared to existing
internal roles. If the role doesn't exist, it's created as an internal role. You can
also create a role at the root level, which gives administrative permissions, or
at the organization level, which restricts access to the organization. See
Synchronization of Roles for details about role creation.

l The user ID is compared to existing user accounts in the internal database. If an
organization ID is specified, only the user IDs in that organization are checked.

JasperReports® Server Authentication Cookbook

21 | Authentication in JasperReports Server

o If the user ID matches an account in the internal database, its list of assigned
roles is synchronized as described in Synchronization of Roles. The user ID can
match either a previously synchronized external user or an internal user
created by an administrator. If the external user ID matches an existing internal
user, authentication fails; an administrative user has to resolve the situation
manually.

o If the user ID does not match an account in the internal database, an external
user account is created. If an organization ID is specified, the account is created
within that organization. Finally, all of the external roles along with any
configurable default internal roles are assigned to the new user account.

For more information about organizations, roles, and user accounts see the JasperReports
Server Administrator Guide.

A user account created for an external user has the same structure as an internal user
account but differs in the following ways:

l A database flag marks it as externally defined.

l The full name of the user is the same as the user ID, which is always the same as the
login name entered by the user.

l The external user account does not store the password.

l It does not have any values for optional user properties, such as the user's email or
profile attributes. The default implementation of external authentication does not
include these properties. An administrator can manually include these properties.

An external authority such as LDAP contains information like the user’s full name, email
address, and profile attributes, which can be mapped into the external user account. However,
this requires customizing the mapping and synchronization beans. See Advanced Topics.

After synchronization, the external user fits in cohesively with all the structures and
mechanisms of JasperReports Server, especially those required for authorization. But the
JasperReports Server administrator's management of an external account is limited to the
ability to disable the account and prevent the external user from logging in.

An external user cannot log in when the external authority is offline; external accounts do
not store the password and are not meant for failover. Once external authentication is
configured, only the information in the external authority determines who can log in and
what roles they have. However, administrators may view external organizations, users, and
roles to determine if all mappings from the external authority are correct.

JasperReports® Server Authentication Cookbook

22 | Authentication in JasperReports Server

Synchronization of Roles
Role synchronization is a complex process because roles need to be updated every time an
external user logs in. Like users and organizations, roles are synchronized in two phases:
mapping the roles from the external authority to roles in JasperReports Server, then
assigning them to the user.

External authentication in JasperReports Server involves three role types:

l External: The synchronization process assigns and removes external roles in users'
accounts according to the roles defined in the external authority. These roles are
flagged in the UI, because they're not meant to be managed by administrators.

l Internal: JasperReports Server administrators create internal roles. To assign internal
roles to external users, set up synchronization to map external roles to internal roles.
Do not manually assign internal roles to external users. External role mapping takes
precedence over manually-assigned roles. So synchronization may remove manually-
assigned roles from users' accounts.

l System: JasperReports Server creates system roles like ROLE_DEMO during
installation. System roles are handled exactly like internal roles above.

In the first phase of synchronization, the principal object has a set of role names derived
from role definitions in the external authority. The goal is a JasperReports Server role for
each of the mapped role names.

l If you're using organizations, all target roles are created within the user's mapped
organization.

l If a role with the target name is already defined in JasperReports Server, that role is
assigned to the user. Otherwise a new external role with this name is created and
assigned.

l By default, roles are mapped to external roles, even if an internal role has the same
name. If an external role name conflicts with an existing internal role in the target
organization, a suffix like _EXT is added to the role name.

l You must explicitly map external roles to internal roles. If you're mapping a role to an
internal role, you can specify whether to assign the internal role at the organization
level or at the system (root) level. Roles mapped at the organization level have no
administrative privileges. Roles at the system administrative privileges and access to
the repositories of all organizations. To map to an internal role at the organization
level, append |* to the name of the internal role. To map to an internal role at the
system level, do not modify the internal role name.

JasperReports® Server Authentication Cookbook

23 | Authentication in JasperReports Server

The goal of the second phase of synchronization is to update the user with the set of roles
mapped from the external authority. The origin of a role determines how the synchronizer
assigns and removes the role from an external user account:

l All of roles identified or created in the first phase — internal, external, and system —
are assigned to the external user. Any role not yet in the user's account, is assigned
by the synchronization process.

l External roles that are assigned to the user — but not among those mapped and
identified in the first phase — are removed from the user. This way, roles removed
from the external authority are also removed from the user's JasperReports Server
account.

l Internal and system roles created by synchronization during a previous login — but
no longer mapped and identified from the external authority — are removed from the
user. If an internal role that was assigned or removed by an administrator appears in
the mapping configuration, the mapping from the external role takes precedence.
This means that a manually assigned role may be added or removed based on the
state of the external database. Therefore, to ensure that synchronization
automatically makes all roles reflect those in the external authority, you should not
manually assign internal roles.

Initialization of JasperReports Server for External
Users
Knowing how external users are synchronized, the system administrator must initialize
JasperReports Server and set the permissions in the repository to provide needed
authorization.

Your deployment procedure must include the following steps:

1. Configure the mapping of usernames, roles, and possibly organization IDs from your
external authority to JasperReports Server. The mapping depends on external
authentication, as described in the chapter for each process. Optionally configure an
admin user to be created in each external organization. The sample configuration
files create a jasperadmin user by default.

2. Create test users in the external authority for every organization and with every role
that you expect in your production environment.

3. If you're mapping external users to multiple organizations, log into JasperReports

JasperReports® Server Authentication Cookbook

24 | Authentication in JasperReports Server

Server as the system administrator and prepare your organization templates and,
possibly, themes for those organizations.

4. Log into JasperReports Server as each of the test users. Doing so validates your
configuration of the external authentication and mapping beans. When successful, it
also creates the external roles and organizations you need.

5. Log into JasperReports Server as the system administrator and:

a. Ensure that mapping and synchronization created the external users, roles, and
organizations you expect.

b. In every organization, change the password of each automatically created
administrator.

6. Initialize your repository:

a. If you're using organizations, create additional repository resources, like data
sources and shared reports, within each organization folder.

b. Define all your repository permissions using the external roles that were
created.

This procedure is necessary because the external roles must exist in the internal database
before you can create permissions for them. If you're using organizations, roles must be
defined within organizations, so the organizations must exist as well. Optionally, you can
use the administrative pages to create all the organizations your externally authenticated
users need. This allows you some additional control over the creation of the organizations,
but you must ensure that their IDs exactly match the values and hierarchies determined by
the mapping.

When your JasperReports Server is in production, the external user accounts will be
populated by the synchronization process as users log in. When the mapping is correct and
consistent, the user population will have the same roles and organizations as those in your
external authority, and you won't need to manually import users or roles into the server.
And as role membership is updated in the external authority, external users are
automatically synchronized in JasperReports Server.

Maintenance of External Users
The advantage of an external authority is that it provides a single place to manage user
accounts across applications. So JasperReports Server can use the same login information
you maintain for your other applications. When a user logs in, the server receives the

JasperReports® Server Authentication Cookbook

25 | Authentication in JasperReports Server

username then maps the roles and organization. If these have changed from the previous
login, the server can synchronize the locally stored external user information.

However, external authentication does not actively replicate the contents of the external
authority in JasperReports Server. If users are deleted from the external authority, or role
definitions change, JasperReports Server’s local information is not updated with these
changes. The external user or role definitions remain in the server’s internal database, but
authentication is still secure because they can't be used to log in.

In general, the mapping and synchronization maintain the external users and roles in
JasperReports Server, but administrators must handle new roles, and you may want to
cleanup deleted users, as explained in the following sections.

Managing External Users
The following table describes the impact on JasperReports Server when managing users in
the external authority:

Action in External
Authority

Impact on JasperReports Server

Creating a new
user

JasperReports Server automatically creates the new external user
account when the user first accesses the server. As long as the user
relies on existing roles in an existing organization, no server changes are
required. If the user is associated with new roles, see Managing External
Role Definitions.

Updating a
password

JasperReports Server doesn't store the passwords of external users, and
is not affected by changes to user passwords or policies on the external
authority.

Updating personal
information

With the default mapping of external users, only the login name is
stored in an external user account. If you configure role mapping based
on personal information in the external user entry, you need to account
for any possible change in the content or structure of the external
authority. For example, if a role is based on a user’s department
attribute, make sure the user can't modify this attribute in the external
authority. Otherwise, the user could inadvertently or maliciously change
his or her roles within JasperReports Server.

JasperReports® Server Authentication Cookbook

26 | Authentication in JasperReports Server

Action in External
Authority

Impact on JasperReports Server

Changing group or
role membership

Described in Managing External Role Definitions.

Changing
organization
membership

When organizations represent departments within a company, a user
may change organizations, as mapped from the external authority. From
JasperReports Server’s point of view, this is the same as deleting a user
in the old organization and creating a user in another organization.

Disabling or
deleting a user

When the user can no longer authenticate with the external authority,
he can’t access JasperReports Server. Even though the external user
account remains in the internal database, it can't be used for logging in.
The defunct user account has no impact on the server; you can safely
delete it.

An external user can be disabled in JasperReports Server.

Managing External Role Definitions
Roles can be mapped from a variety of structures that depend on the external authority:
LDAP authentication maps roles dynamically from groups, and CAS authentication extracts
roles from an external data source or specifies them statically in the configuration file.
Because each external authority may define roles differently, this guide refers to those
structures collectively as role definitions.

In practice, you'll find that only a subset of the role definitions in your external authority
are applicable to JasperReports Server. Of those, some may also be used by other
applications, and others may be created specifically for managing users in JasperReports
Server. You should identify the maintenance procedures on your enterprise-wide user
authority that impact JasperReports Server and document additional procedures for
keeping JasperReports Server in sync.

JasperReports® Server Authentication Cookbook

27 | Authentication in JasperReports Server

The following table describes the impact on JasperReports Server when modifying role
definitions in the external authority:

Action in External
Authority

Impact on JasperReports Server

Creating a new role Role definitions are not directly mapped to JasperReports Server; only
roles that are assigned to users who log in are mapped. When you
create a new role and assign it to a user who accesses JasperReports
Server, determine which case applies:

• The role is significant to access control within JasperReports
Server. You must initialize this role in the server with a test user
and define all necessary repository authorization rules to secure
your data before you deploy this role to real users, as described
in Synchronization of Roles.

• The role is not significant to users within JasperReports Server.
Synchronization automatically creates the role and assigns it to
users according to their mapping, but with no authorization rules
based on the role, it has no impact.

Modifying role
membership

Changes in role membership are reflected the next time a role member
starts a new session in JasperReports Server, as described in
Synchronization of External Users. Roles that were previously unknown
to the server are treated as new roles as described above, and roles that
are no longer assigned to a user are deleted as described below.

Deleting a role External users no longer have the role, and it is removed from each
external user by synchronization upon the next login. The role remains
in the internal database, and permissions that reference the role remain
in the repository. The role may still be assigned to external users who
have not logged in since the role was removed.

• If the role definition in the external authority was mapped to an
external role in JasperReports Server, it has no impact on the
server and you can safely delete it.

• If the role definition is mapped to an internally defined role in
JasperReports Server, you can delete the role or modify the
configuration file to remove the mapping. If you remove the
mapping, the internal role can be assigned manually by an

JasperReports® Server Authentication Cookbook

28 | Authentication in JasperReports Server

Action in External
Authority

Impact on JasperReports Server

administrator. If you do not modify the configuration file and you
attempt to assign the internal role manually to a user in
JasperReports Server, the role is automatically removed during
synchronization.

Modifying Role Mappings
Once you've set up external authentication with your JasperReports Server instance, you
add new role mappings by editing the applicationContext-externalAuth-*.xml file. You need
to restart the server for these changes to take effect.

Be careful changing or removing role mappings. When a role mapping is removed or
changed, synchronization no longer updates the target role in JasperReports Server. This
means users assigned a deleted external role still have that role in JasperReports Server.
You can work around this by creating a mapping from a non-existing role definition in the
external authority to the target role you want to remove.

When you want to change the target role for an existing role mapping, you should create a dummy
mapping that maps a non-existent role definition to the JasperReports Server role you no longer
want to use.

For example, suppose you have Sales Manager as a role in your external authority, and you
initially map it to ROLE_ADMINISTRATOR in JasperReports Server.

Sales Manager Mandy logs into JasperReports Server and is assigned ROLE_
ADMINISTRATOR.

You then create a new role in JasperReports Server, ROLE_SALES_MANAGER, and modify
your role mapping so Sales Manager in the external authority is now mapped to ROLE_
SALES_MANAGER in JasperReports Server. You then restart the server.

By default, the next time Mandy logs in, she's assigned ROLE_SALES_MANAGER. But
because ROLE_ADMINISTRATOR no longer appears in your application context file,
synchronization doesn't check for it and remove it. Mandy now has two roles: ROLE_
ADMINISTRATOR and ROLE_SALES_MANAGER.

You can remove ROLE_ADMINISTRATOR from Mandy's account by creating a dummy
mapping with ROLE_ADMINISTRATOR as the target. For example, if no one in your external
authority has the role definition No Such Role, you can add a mapping in your application

JasperReports® Server Authentication Cookbook

29 | Authentication in JasperReports Server

context file from No Such Role to ROLE_ADMINISTRATOR then restart the server. The next
time Mandy logs in, the synchronizer finds that she doesn't have the No Such Role role
definition and removes ROLE_ADMINISTRATOR.

It is possible for a role in JasperReports Server to be the target of more than one role mapping.
If multiple role definitions map to the same role in JasperReports Server, users who have any
one of the role definitions will receive the role in JasperReports Server.

Managing External Organizations
The following table describes the impact on JasperReports Server when modifying
organizations defined in the external authority:

Action in External
Authority

Impact on JasperReports Server

Adding an
organization

Organizations are not directly mapped to JasperReports Server, rather a
new organization ID is mapped when synchronizing the first user in the
organization that accesses the server. At that time, synchronization
creates the organization and the user within it, along with any roles
assigned to the user. Determine which of the following cases applies:

• Your organization definitions and mappings create the same role
names in every organization. You should configure the
organization folder templates so the default contents and
permissions work with the known role names. Your external
organization definitions should then map to organizations that
work as soon as the first user logs in.

• Each of your externally defined organizations has different role
names or requires specific repository contents. You should create
test users in the new organizations first, so you can configure the
new organization folder, synchronize external roles, and assign
repository permissions before actual users have access. See the
procedure in Initialization of JasperReports Server for External
Users.

Modifying an
organization

Changing the users or roles in organizations defined in the external
authority is the same as adding users or roles to one organization and
removing them from the other. See the corresponding actions in

JasperReports® Server Authentication Cookbook

30 | Authentication in JasperReports Server

Action in External
Authority

Impact on JasperReports Server

Managing External Users and Managing External Role Definitions.

Deleting an
organization

Because organization definitions are not mapped directly, deleting an
organization has the same effect as removing each of its users. The
organization remains in the internal database and repository, along with
the external roles and users who last accessed it. The unused
organization has no impact on the server. You can safely delete it.

Changing the
default admin
users of
organizations

Default admin users are created only when the organization is created.
Therefore, changes to the default admin users appear only in
organizations created after the changes were made. In particular, if you
add or delete default admin users, your changes affect only new
organizations.

Internal Users
Even when you enable external authentication, JasperReports Server supports internal
users, especially administrative users. For example, you can still define superuser and
jasperadmin internally. Internal users cannot login through a separate external login
screen. They can log in only through the JasperReports Server login screen, for example at
http://localhost:8080/jasperserver-pro/login.html. Internal administrators such as superuser
may have access at the root organization level. They can also set internal permissions for
external users, if necessary.

An external user can have the same username as an internal user in a different
organization. But if this happens within an organization, the external user won’t be able to
log into JasperReports Server.

JasperReports® Server Authentication Cookbook

31 | LDAP Authentication

LDAP Authentication
Lightweight Directory Access Protocol (LDAP) is one of the most popular architectures for
enterprise directories. By centralizing all user management in an LDAP directory,
applications across the enterprise can share the same user database, and administrators
don't need to duplicate user accounts.

This chapter shows how JasperReports Server can be configured to perform external
authentication with LDAP. As part of the authentication process, JasperReports Server also
synchronizes the external user information, such as roles and organization ID, between
LDAP and the JasperReports Server internal database.

LDAP authentication does not provide single sign-on (SSO) functionality. You must
implement that separately and configure it for use within JasperReports Server. Enabling
SSO with LDAP is beyond the scope of this guide. For more information, see Advanced
Topics.

This chapter assumes you're familiar with LDAP servers and the structure of the data they
contain, in particular the format of distinguished names (DNs) and relative distinguished
names (RDNs) that create structure and identify entries in LDAP. For more information
about LDAP in Spring Security, see the LDAP sample in the Spring Security reference
documentation for 5.x at
https://docs.spring.io/spring-security/site/docs/5.3.13.RELEASE/reference/html5/.

This chapter contains the following sections:

• Overview of External LDAP Authentication

• Configuring JasperReports Server for LDAP Authentication

• Overview of LDAP Beans

• Setting the LDAP Connection Parameters

• Performing LDAP User Search

• Mapping the User Roles

• Mapping the User Organization

• Mapping Roles to System Roles

• Setting Up Multiple Providers

https://docs.spring.io/spring-security/site/docs/5.3.13.RELEASE/reference/html5/

JasperReports® Server Authentication Cookbook

32 | LDAP Authentication

• Troubleshooting LDAP Configurations

• Adding a Custom Processor

• Restarting JasperReports Server

Overview of External LDAP Authentication
This section explains how JasperReports Server performs external authentication with an
LDAP server, highlighting the differences with Default Internal Authentication.

The following diagram shows the general steps involved in external LDAP authentication:

Figure 2: General Steps of External LDAP Authentication

The following process explains the interaction of the user’s browser, JasperReports Server,
and the LDAP server:

JasperReports® Server Authentication Cookbook

33 | LDAP Authentication

1. An unauthenticated user requests any page in JasperReports Server.
Often, users bookmark the login page and begin directly at Step 3, but this step
covers the general case and secures every possible access to the server. For example,
this step applies when a user clicks the web interface of an expired session or if a
user is given the direct URL to a report within the server.

2. JasperReports Server detects that the user is not logged in and redirects to the
JasperReports Server login page.

3. The user submits a username and password through the login page, even though the
user credentials are not verified internally.
In servers with multiple organizations, the organization ID must be left blank because
it is supplied by the external LDAP authority, except in the case of an internal login
(such as an administrator), then the organization ID must be provided.

4. JasperReports Server performs a search on the LDAP server with the given
credentials. If they are valid, the server creates a principal object to represent the
user’s session in memory. In multi-organization environments, the user’s organization
ID is mapped from the LDAP entry. The server also performs a second search to map
the user’s LDAP groups to server roles.

The beans that perform LDAP authentication do not map information like the user’s full
name, email address, or profile attributes that may exist in the LDAP directory. This
requires customizing the JSFilterBasedLdapUserSearch bean, as described
in Advanced Topics.

The username, roles, and organization information are also synchronized with the
internal database, where the user account is marked as an external user. The user is
now authenticated, the principal object represents the user session, and the
environment reflects the user’s roles and organization defined in LDAP. For more
information about synchronization, see Synchronization of External Users.

5. As with the default internal authorization, JasperReports Server now sends the
requested content to the user or, if none was specified, the home page appropriate
for the user.
Content sent to the user is subject to authorization. For example the home page has
different options for administrators than for regular users, as determined by the roles
of the user in the principal object. Or if the user is viewing the repository, the folders
and objects returned are determined by the organization ID and roles in the principal
object.

When comparing these steps with those in Default Internal Authentication, there are three
significant differences, all in Step 3:

JasperReports® Server Authentication Cookbook

34 | LDAP Authentication

l JasperReports Server verifies the credentials through LDAP instead of using its
internal user database.

l The roles and organization ID in the user’s principal object are mapped from the
LDAP response.

l The internal database must be synchronized with any new information in the user’s
principal object.

Configuring JasperReports Server for LDAP
Authentication
To use LDAP with your JasperReports Server, configure the LDAP connection parameters in
default_master.properties before installing JasperReports Server. You can set up
encryption for the password to your LDAP server at that time. See the JasperReports Server
Security Guide for more information.

A sample file for configuring JasperReports Server for external LDAP authentication is
included in the JasperReports Server distribution. Sample files are located in the
<js-install>/samples/externalAuth-sample-config directory of your JasperReports Server.
The file included depends on your version of JasperReports Server:

l sample-applicationContext-externalAuth-LDAP.xml: Sample file for integrating LDAP
with JasperReports Server with a single organization. This file is included in the
community edition.

l sample-applicationContext-externalAuth-LDAP-mt.xml: Sample file for integrating
LDAP with JasperReports Server with multiple organizations. This file is included in
commercial editions of JasperReports Server. To use external authentication with a
commercial version of JasperReports Server with a single organization, you need to
modify the sample file as described in Mapping the User Organization.

To configure JasperReports Server to work with your implementation of LDAP, modify and
deploy the sample configuration file as follows:

1. Make a copy of the LDAP sample file in the <js-install>/samples/externalAuth-sample-
config/ directory and rename it to remove the sample- prefix.

2. Edit the file you created and configure the beans correctly for your deployment, as
described in the following sections.

JasperReports® Server Authentication Cookbook

35 | LDAP Authentication

3. Place the modified file in the <js-webapp>/WEB-INF directory.

<js-webapp> is the location of the JasperReports Server web application in your application server,
or where you're modifying the configuration files, as explained in . The rest of this chapter refers to
file names alone.

Overview of LDAP Beans
The sample-applicationContext-externalAuth-LDAP[-mt].xml file contains the beans needed
to enable and perform LDAP authentication. This section summarizes the most important
beans in this file, including the beans you need to modify to configure JasperReports
Server to work with your external database.

l proxyAuthenticationProcessingFilter: Bean that enables external authentication
for direct access. When this proxy bean definition is present in the application
context, that is, when it appears in an applicationContext-<customName>.xml file in
the <js-webapp>/WEB-INF directory, the Spring Security filter chain processes the
authentication with the proxy definitions instead of the default internal filter. You do
not need to configure this bean.

l ldapAuthenticationManager: Lists the available authentication providers. The
providers in the list are invoked in the order they appear in the configuration file
until one of them authenticates the user. The rest of the providers are then skipped.
The final provider in the list, ${bean.daoAuthenticationProvider} authenticates
against the jasperserver internal database. You can customize authentication by
adding more providers to this bean.

l ldapContextSource: Helper bean that defines the LDAP server used by the
ldapAuthenticationProvider bean. Configure your LDAP connection using this bean, as
described in Setting the LDAP Connection Parameters.

l ldapAuthenticationProvider: Custom authentication provider for LDAP. This bean
has two inline sub-beans:

o Bean of class JSBindAuthenticator: JSBindAuthenticator is a wrapper class for
the Spring Security BindAuthenticator class. Configure this bean and its sub-
bean userSearch to specify the rules for finding user entries in your LDAP
directory, as described in Performing LDAP User Search.

o Bean of class JSDefaultLdapAuthoritiesPopulator:
JSDefaultLdapAuthoritiesPopulator is a wrapper class for the Spring Security

JasperReports® Server Authentication Cookbook

36 | LDAP Authentication

DefaultLdapAuthoritiesPopulator class. Configure this bean to specify the
location of group definitions in LDAP, how to find the groups to which the user
belongs, and any transformation of group names in LDAP to role names in
JasperReports Server, as described in Mapping the User Roles.

l externalDataSynchronizer: Bean whose class creates a mirror image of the external
user in the internal jasperserver database. The sample includes the following
processors:

o ldapExternalTenantProcessor (commercial editions only): Bean that maps
externally defined tenants to JasperReports Server organizations. For single-
organization JasperReports Server deployments, configure this bean to specify
the default organization, as described in Mapping to a Single Organization. For
multi-organization JasperReports Server deployments, configure this bean to
specify the mapping between LDAP RDNs and JasperReports Server
organizations, as described in Mapping to Multiple Organizations.

o mtExternalUserSetupProcessor or externalUserSetupProcessor: Bean that
creates and configures the internal user corresponding to a successfully
authenticated external user. Configure this bean to specify the default internal
role given to the external users in JasperReports Server and to map external
LDAP roles to internal JasperReports Server roles, as described in Mapping
Roles to System Roles.

JasperReports® Server Authentication Cookbook

37 | LDAP Authentication

The following figure shows the beans used in LDAP authentication:

Figure 3: LDAP Beans

Setting the LDAP Connection Parameters
You can configure your connection to the LDAP server in one of two ways:

l Configure the connection by LDAP properties in the default_master properties file
before installation or upgrade. You can choose to encrypt any of the LDAP connection
parameters. This is the preferred method for setting the LDAP connection
parameters.

JasperReports® Server Authentication Cookbook

38 | LDAP Authentication

l For an existing JasperReports Server, you can configure the connection properties
directly in your sample-applicationContext-externalAuth-LDAP[-mt].xml file. In this
case, the properties, including the password, cannot be encrypted.

Setting LDAP Connection Parameters in default_
master.properties
The preferred approach is to configure the external.ldapUrl, external.ldapDn, and
external.ldapPassword properties in the default_master.properties file before installation or
upgrade. The default configuration of the ldapContextSource bean in sample-
applicationContext-externalAuth-LDAP[-mt].xml uses context properties for the LDAP
connection properties:

<bean id="ldapContextSource"
class="com.jaspersoft.jasperserver.api.security.externalAuth.ldap.JSLdapContextSource">

<constructor-arg value="${external.ldap.url}" />
<property name="userDn" value="${external.ldap.username}" />
<property name="password" value="${external.ldap.password}"/>

</bean>

To configure these properties using default_master.properties, follow these steps:

1. Open default_master.properties in a text editor.

2. Locate the following properties and set them for your LDAP server as follows:

l external.ldapUrl property: The URL of your LDAP server, including the base DN.

l external.ldapDn property: The distinguished name (DN) of your LDAP administrator.

l external.ldapPassword property: The password of your LDAP administrator.

3. You can choose to encrypt any of the LDAP connection parameters.

The following example shows the syntax of the properties in the default_master.properties
file:

external.ldapUrl=ldap://hostname:389/dc=example,dc=com
external.ldapDn=cn=Administrator,dc=example,dc=com
external.ldapPassword=password

To encrypt the password property, also set the following:

JasperReports® Server Authentication Cookbook

39 | LDAP Authentication

encrypt=true
propsToEncrypt=dbPassword,external.ldapPassword

See the JasperReports Server Security Guide for more information on encrypting
passwords using buildomatic.

Setting LDAP Connection Parameters Manually
To set the connection parameters for the LDAP server directly in the application context
file, configure the ldapContextSource helper bean as follows:

If you configured your LDAP connection during JasperReports Server installation or upgrade, do
not set the parameters using ldapContextSource. You can verify whether the parameters are set
by looking at the default_master.properties file.

1. In sample-applicationContext-externalAuth-LDAP[-mt].xml, locate the
ldapContextSource bean.

2. Specify the following information:

l constructor-arg value: The URL of your LDAP server, including the base DN.

l userDn property: The distinguished name (DN) of your LDAP administrator.

l password property: The password of your LDAP administrator.

If your LDAP server is configured to allow anonymous user lookup, you don't need to specify
the userDn and password properties.

Here's an example shows the syntax of the bean’s constructor and properties when
manually configured:

<bean id="ldapContextSource"
class="com.jaspersoft.jasperserver.api.security.externalAuth.ldap.JSLdapContextSource">

<constructor-arg value="ldap://hostname:389/dc=example,dc=com" />
<property name="userDn"><value>cn=Administrator,dc=example,dc=com</value></property>
<property name="password"><value>password</value></property>

</bean>

JasperReports® Server Authentication Cookbook

40 | LDAP Authentication

Performing LDAP User Search
You need to set up the search parameters for locating your users in the LDAP directory. The
goal is to locate a single user entry that validates the password given during the login
process. The LDAP entry located by the user search is later used to map roles and
organizations.

One of the most common problems in configuring LDAP for JasperReports Server is setting
up the correct search parameters to locate the users you want to map. LDAP is a rich and
complex structure, with many possible variations, and LDAP directories tend to grow in
complexity over time. To successfully map your users from LDAP to JasperReports Server,
you need to understand the directory server tree structure of your LDAP server. Be aware
that branches can be password protected and a single keyword can be used in different
ways in different contexts. It can be helpful to use an open-source LDAP browser, like
Apache Directory Server/Studio or JXplorer, to view and navigate your LDAP directory while
troubleshooting LDAP user search problems.

Each time a user logs in, their roles and status are updated via your chosen method and
synchronized with the internal jasperserver database. If you want to disable an external user or
modify their external roles, you must do so in your LDAP directory.

Configuring JSBindAuthenticator
The sample files use an unnamed bean of the JSBindAuthenticator class to encapsulate
search parameters for finding users in the LDAP directory.

There are two ways to configure JSBindAuthenticator to locate users:

l Configure the userDnPatterns property in the JSBindAuthenticator bean to match
RDN patterns based on the login name provided by the user. Use this method if the
login name appears in the DN of your user entries and your user entries are in a fixed
branch of your LDAP directory. See Specifying userDnPatterns Parameters for more
information.

Matching patterns is faster because it checks for a DN only in the LDAP directory, instead of a
searching all users. However, it's less flexible. userDnPatterns is not included in the sample
files by default.

l Configure the userSearch helper bean to perform a search for the login name
provided by the user. Use this method if the login name is the value of an attribute

JasperReports® Server Authentication Cookbook

41 | LDAP Authentication

that doesn't appear in the RDN, or if your user entries are located in a more complex
structure. See Specifying userSearch Parameters for more information.

You can configure pattern matching and login name search at the same time. Patterns are
matched first, and login name search is done only if no match is found.

To find a user, JSBindAuthenticator takes the login name entered into JasperReports
Server and attempts to find the correct user in the LDAP directory using bind
authentication, as follows:

1. Using the specified pattern matching or search for the login name, find a candidate
user entry.

The LDAP username for this candidate does not have to be the JasperReports Server
login name. If they are different, the user in JasperReports Server is assigned the login
name given during the login process, and not the LDAP username.

2. Attempt to log into the LDAP server using the candidate LDAP username with the
login password.

3. A successful bind indicates that the right user was found.

Alternative to Bind Authentication
Bind authentication with the JSBindAuthenticator bean is the default behavior when
configuring Spring Security for LDAP authentication. But Spring Security provides an
alternate authentication method based on password comparison:

1. Use the administrator credentials in the ldapContextSource bean to log into the LDAP
server.

2. Find a candidate user entry.

3. Retrieve the candidate’s password attribute and compare it to the login password, or
send the login password for comparison by the LDAP server.

The alternate authentication method is implemented by Spring Security in the
PasswordComparisonAuthenticator class. Configuring Spring Security with this class is
beyond the scope of this guide. For more information, see the Spring Security
documentation and Javadoc.

JasperReports® Server Authentication Cookbook

42 | LDAP Authentication

Specifying userDnPatterns Parameters
If you have a fixed structure of user entries and the login name of the user appears in the
RDN of your user entries, you can configure the JSBindAuthenticator bean with patterns to
match them. The patterns are not included in the sample file, but can easily be added:

1. In sample-applicationContext-externalAuth-LDAP[-mt].xml, locate the
ldapAuthenticationProvider bean. The unnamed bean of class JSBindAuthenticator is
the first constructor argument.

2. Add the userDnPatterns property in JSBindAuthenticator.

3. Configure one or more patterns for matching the RDNs of user entries. For each value
in the list, the server substitutes the login name entered by the user for the {0}
placeholder, then creates a DN by appending the base DN from the LDAP URL. The
LDAP URL is specified in Setting the LDAP Connection Parameters. JasperReports
Server attempts to bind to the LDAP directory with the DN created with each pattern
in the order they are given.

When you enter a pattern for RDN matching, make sure to use only the relative DN. Do not include
the base DN that you set up when creating the LDAP connection parameters.

In the example below, JasperReports Server looks for a user whose given login name
appears in the uid attribute of the RDN in the ou=users branch of the LDAP directory:

<bean id="ldapAuthenticationProvider" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.ldap.JSLdapAuthenticationProvider">

<constructor-arg>
<bean class="com.jaspersoft.jasperserver.api.security.externalAuth.wrappers.

spring.ldap.JSBindAuthenticator">
<constructor-arg><ref bean="ldapContextSource"/></constructor-arg>
<property name="userDnPatterns">
<list>
<value>uid={0},ou=users</value>

</list>
</property>

</bean>
</constructor-arg>
...

</bean>

Notice that the domain name value only specifies ou=users. This is combined with the base
DN defined by the external.ldapUrl property in the default_master.properties file or the
constructor-arg value in the ldapContextSource bean to create the full DN.

JasperReports® Server Authentication Cookbook

43 | LDAP Authentication

Specifying userSearch Parameters
Use the userSearch bean to find users if they don't match a simple pattern. In particular, if
you're authenticating users for one or more organizations, it is likely user entries are in
multiple branches of your directory.

To search for user entries, locate the helper bean userSearch in sample-applicationContext-
externalAuth-LDAP[-mt].xml and specify the following information:

l An optional branch RDN where user entries are located. If not specified, the search
includes your entire LDAP directory starting from the base DN of the LDAP URL
specified in Setting the LDAP Connection Parameters.

l An LDAP filter expression to compare any attribute or combination of attributes with
the login name. JasperReports Server substitutes the login name entered by the user
for the {0} placeholder to perform the search.

l Whether or not the search should extend to all subtrees beneath the branch DN or,
when no branch DN is specified, beneath the base DN.

When you enter a location for user search, make sure to use only the relative DN. Do not include
the base DN that you set up when creating the LDAP connection parameters.

The following example shows the syntax of the bean’s constructor and property:

<bean id="userSearch" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.ldap.JSFilterBasedLdapUserSearch">

<constructor-arg index="0"><value>ou=users</value></constructor-arg>
<constructor-arg index="1"><value>(uid={0})</value></constructor-arg>
<constructor-arg index="2"><ref bean="ldapContextSource" /></constructor-arg>
<property name="searchSubtree"><value>true</value></property>

</bean>

The combination of these three parameters lets you optimize the search for your user
entries and reduce the load on your LDAP directory. For example, if your users are located
in a dedicated branch of your LDAP structure, specify it in the first constructor argument to
avoid searching the entire tree.

LDAP Search for Multiple Organizations
When you're authenticating users for one or more organizations in a commercial edition of
JasperReports Server, the search parameters must be able to locate all users for all
organizations for these reasons:

JasperReports® Server Authentication Cookbook

44 | LDAP Authentication

l The mapping from LDAP user entries to organizations in the server requires the user
entries to be in a hierarchical tree structure that mimics the intended organization
hierarchy. You can't use attribute values or group membership in LDAP to define
organizations.

l External authorization doesn't allow the user to enter an organization name. So the
search must find the username among all organizations.

This has two implications:

1. Your choice of pattern matching or search depends on the structure of user entries in
LDAP. For example, if you have a small fixed number of organizations, you could
match them with a pattern for each one, as follows:

<property name="userDnPatterns"><list>
<value>uid={0},ou=users,o=Finance</value>
<value>uid={0},ou=users,o=HR</value>
<value>uid={0},ou=users,o=Executive</value></list>

</property>

But if you have a large number of organizations, or if the number or names of
organizations can change, you need to search for every potential user. Depending on your
LDAP structure, you may be able to specify a search base in constructor-arg index="0"; the
example below doesn't have one.

<bean id="userSearch" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.ldap.JSFilterBasedLdapUserSearch">

<constructor-arg index="0"><value></value></constructor-arg>
<constructor-arg index="1"><value>(uid={0})</value></constructor-arg>
<constructor-arg index="2"><ref bean="ldapContextSource"

/></constructor-arg>
<property name="searchSubtree"><value>true</value></property>

</bean>

2. You cannot implement external authentication for two users with the same login
name in different organizations. LDAP supports this as long as the two users have
distinct DNs, and JasperReports Server supports this for the default internal
authentication. But during external authentication, organization mapping happens
after user search, so the user search must return a single LDAP entry:

l Pattern matching stops at the first match based on the login name. As a result, only
the user whose LDAP entry pattern is listed higher in the list can log in.

JasperReports® Server Authentication Cookbook

45 | LDAP Authentication

l Search returns more than one entry. As a result, login fails for both users with the
same login name.

Mapping the User Roles
An external user's roles in JasperReports Server are based on the groups to which that user
belongs in LDAP. The server does a second search in the LDAP directory to determine any
user roles. The mapping defines the location of the group definitions in LDAP, how to find
the user's groups, and any transformation of the group name for use in the server as a role
name.

Configuring the User Role Mapping
The mapping for user roles is configured in a bean of the
JSDefaultLdapAuthoritiesPopulator class, a Jaspersoft wrapper class that is itself part of
the configuration of the ldapAuthenticationProvider bean.

Some LDAP servers support other user-grouping mechanisms, like nsrole in the Sun Directory
Server. These can be mapped into JasperReports Server roles through the configuration
parameters below, by extending the JSDefaultLdapAuthoritiesPopulator class, or a combination of
both. Such configurations are beyond the scope of this guide.

To configure the mapping for user roles in sample-applicationContext-externalAuth-LDAP[-
mt].xml, locate the bean of the JSDefaultLdapAuthoritiesPopulator class, the second
constructor argument of ldapAuthenticationProvider, and specify the following information:

l constructor-arg index="1": An optional branch DN where group entries are located. If
not specified, the search covers your entire LDAP directory starting from the base DN.

l groupRoleAttribute property: The attribute whose value is mapped to the name of
the JasperReports Server role. Often, this is the cn attribute that gives the name of
the role in the RDN of the group entry. But it can be any attribute, for example a
custom attribute named Jaspersoft Role Name defined by a custom LDAP schema.

l groupSearchFilter property: A group search filter that locates entries representing
groups to which the user belongs. For static groups, this filter should detect entries
with the groupofuniquenames object class and with a uniqueMember value that
matches the DN found by the user search. You can use the following parameters:

o {0} represents the full DN of the user entry.

JasperReports® Server Authentication Cookbook

46 | LDAP Authentication

o {1} represents the username.

l searchSubtree property: Whether or not the search should extend to all subtrees
beneath the branch DN, or beneath the base DN when no branch DN is specified.

JSDefaultLdapAuthoritiesPopulator is a wrapper class of the Spring Security
DefaultLdapAuthoritiesPopulator class. Spring Security supports additional properties; see
the Spring Security 5.x documentation for more information.

All internal and external users are assigned ROLE_USER by default. So you never need to create
or map this role in your LDAP directory.

The following shows an example syntax of the constructor arguments and properties that
uses groupofuniquenames:

<bean id="ldapAuthenticationProvider" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.ldap.JSLdapAuthenticationProvider">

<constructor-arg> ...
</constructor-arg>
<constructor-arg>
<bean class="com.jaspersoft.jasperserver.api.security.externalAuth.wrappers.

 spring.ldap.JSDefaultLdapAuthoritiesPopulator">
<constructor-arg index="0"><ref bean="ldapContextSource"/></constructor-arg>
<!-- optional branch DN for roles -->
<constructor-arg index="1"><value></value></constructor-arg>
<property name="groupRoleAttribute"><value>cn</value></property>
<property name="groupSearchFilter"><value>
(&(uniqueMember={0})(objectclass=groupofuniquenames))</value></property>

<property name="searchSubtree"><value>true</value></property>
</bean>

</constructor-arg>
</bean>

Be careful when defining the properties for mapping user roles. The search for groups in
the LDAP directory must not cause an error, otherwise the entire login will fail. For
example, if you specify a branch DN that doesn't exist, the search will cause an error, and
users will be unable to log in. A successful search that returns no results will allow users to
log in, but without having the intended roles.

After the mapping has determined the role names given to the external user in
JasperReports Server:

l In the community edition, which doesn't have the organization architecture, the roles
are synchronized with existing roles and assigned to the user.

l In commercial editions, which have the organization architecture, the external user
and roles are assigned to an organization that's either the default single organization
or an organization mapped from the DN of the LDAP user. Organization mapping is
described in Mapping the User Organization.

https://docs.spring.io/spring-security/site/docs/5.3.13.RELEASE/reference/html5/

JasperReports® Server Authentication Cookbook

47 | LDAP Authentication

If you intend for one of the mapped roles to provide administrator privileges, you must
explicitly map it to the system roles, as described in Mapping Roles to System Roles.
Otherwise, all mapped roles are created in the mapped organization.

Synchronization creates roles in JasperReports Server if they don’t exist, as described in
Synchronization of Roles.

Mapping Roles to System Roles
When the organization mapping is complete, synchronization invokes
mtExternalUserSetupProcessor commercial editions) or externalUserSetupProcessor
(community edition) to create the external user and roles in that organization.
JasperReports Server includes an additional mapping of roles to system roles so you can
grant administrator privileges to your external users. Using this feature, LDAP entries
belonging to custom groups can be granted system or organization admin roles in
JasperReports Server.

Depending on your deployment, you can map roles to system roles in one of two ways:

l Configure the mtExternalUserSetupProcessor or externalUserSetupProcessor bean
with organizationRoleMap to map between external and internal roles. The processor
checks if the user has an external role as a map entry key. If the user has the role, the
processor assigns the user the internal role in the map entry value instead of the
external role in the key.

l Map user roles statically using the mtExternalUserSetupProcessor or
externalUserSetupProcessor bean.

One practical consequence of external administrator role mapping is that external
authentication can be used exclusively. When properly set up, you can have external users
who are system or organization administrators. Then you don't need to have the superuser
and jasperadmin users. However, you must ensure that every organization has an external
user mapped to the organization with the correct attributes to have organization admin
privileges.

Administrators of your LDAP server cannot log into JasperReports Server using their LDAP
administrator credentials.

In most LDAP servers, users and administrators are stored in different base DNs. For example,
you might store user entries in dc=example,dc=com, but administrators are stored under
cn=Administrators,cn=config or ou=system. The mechanism for locating users during
authentication can only search in a single base DN, so administrators in a different one cannot be
found.

JasperReports® Server Authentication Cookbook

48 | LDAP Authentication

organizationRoleMap
System and organization admin privileges are determined by the ROLE_SUPERUSER and
ROLE_ADMINISTRATOR system roles at the root level. Using the organizationRoleMap
property, you can assign these system roles to LDAP entries based on custom group
membership. This property can be used in addition to the properties that map group
names to organization roles.

Whether you map users and roles to a single organization or multiple organizations, you
can define this additional mapping between any role name that your mapping creates and
any system role. You specify role mapping via the organizationRoleMap property of the
mtExternalUserSetupProcessor bean (commercial editions) or externalUserSetupProcessor
(community edition).

The organizationRoleMap property provides a list of key/value pairs that maps external role
names to internal ones. The key should be a role name that your mapping creates, after
adding the prefix and capitalization as configured in JSDefaultLdapAuthoritiesPopulator.
For commercial JasperReports Server deployments, you need to choose the level at which
the role is assigned:

l To map to an internal role at the organization level, append |* to the name of the
internal role, for example, ROLE_EXTERNAL_USER|*. Roles mapped at the
organization level do not have administrative privileges.

l To map to an internal role at the system (null) level, do not modify the internal role
name, for example, ROLE_EXTERNAL_ADMINISTRATOR. Roles at the system level are
usually reserved for special users like the system administrator and allow access to
the repository folder of all other organizations.

For example, if your LDAP user belongs to a group named jrsadmin that's mapped to the
name ROLE_ADMIN_EXTERNAL_ORGANIZATION, the following code example would assign
that user the ROLE_ADMINISTRATOR system role that makes the user an organization
admin. This example shows how to create this system role mapping in a single
organization configuration for commercial editions:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTExternalUserSetupProcessor" parent="abstractExternalProcessor">
<property name="userAuthorityService">
<ref bean="${bean.internalUserAuthorityService}"/>

</property>
<property name="defaultInternalRoles">
<list>

JasperReports® Server Authentication Cookbook

49 | LDAP Authentication

<value>ROLE_USER</value>
</list>

</property>

<property name="organizationRoleMap">
<map>

<entry>
<key>
<value>ROLE_ADMIN_EXTERNAL_ORGANIZATION</value>

</key>
<value>ROLE_ADMINISTRATOR</value>

</entry>
</map>

</property>
</bean>

If the value ROLE_ADMINISTRATOR in the key value pair had ended with |* (ROLE_
ADMINISTRATOR|*), the user would have been assigned ROLE_ADMINISTRATOR at the
organization level.

Roles not mapped to system roles are created and synchronized in the mapped
organization, as described in Synchronization of Roles. In particular, if the name ROLE_
ADMINISTRATOR or ROLE_SUPERUSER are mapped from the LDAP groups, but not mapped
to system roles, they're created as organization roles and assigned to the user. As
organization roles, they don't grant any access permissions, which can be very confusing
for administrators. Avoid LDAP groups and role mappings that create these names as
organization roles.

Defining User Roles Statically
If you're mapping all your external users to a single organization, you can assign static
roles to users. This lets you specify a list of administrative users and roles, and a list of
roles for non-administrative users. To define static roles, use the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. To set up static roles,
locate the version of the bean used in your sample file and configure the following
properties:

l adminUserNames property: A list of usernames granted internal administrator
privileges in JasperReports Server. The username values must exactly match the
usernames authenticated and returned by the external authority.

l defaultAdminRoles property: A list of JasperReports Server internal roles. These are
assigned to every user in the list of administrators.

JasperReports® Server Authentication Cookbook

50 | LDAP Authentication

l defaultInternalRoles property: A list of JasperReports Server roles assigned to every
user not in the list of administrators.

The following example shows how to use the mtExternalUserSetupProcessor bean to define
static roles. The configuration for externalUserSetupProcessor is similar:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">

...
 <property name="adminUsernames">
 <list>
 <value>myorgadmin</value>
 </list>
 </property><property name="defaultAdminRoles">
 <list>
 <value>ROLE_USER</value>
 <value>ROLE_ADMINISTRATOR</value>
 </list>
 </property>
 <property name="defaultInternalRoles">

 <list>
 <value>ROLE_USER</value>
 </list>
 </property>
...

Setting Default Roles
You can assign roles to all users using the defaultInternalRoles property of
externalUserSetupProcessor or mtExternalUserSetupProcessor. The following example
shows how to use this property in externalUserSetupProcessor to assign ROLE_USER to all
users, in addition to the roles assigned by mapping:

<property name="defaultInternalRoles">
<list>

<value>ROLE_USER</value>
</list>

</property>

JasperReports® Server Authentication Cookbook

51 | LDAP Authentication

Avoiding Role Collisions
If an external role has the same name as an internal role at the same organization level,
JasperReports Server adds a suffix such as _EXT to the external role name to avoid
collisions. For example, a user with the externally defined role ROLE_ADMINISTRATOR is
assigned the role ROLE_ADMINISTRATOR_EXT in the JasperReports Server database. This
ensures that internal administrator accounts like jasperadmin and superuser can still log in
as internal administrators with the associated permissions.

You can set the extension in the conflictingExternalInternalRoleNameSuffix property in the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. If the property doesn't
appear in the bean, the extension is still implemented but defaults to _EXT. The following
example shows how to configure this property:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">
<property name="conflictingExternalInternalRoleNameSuffix"

value="_EXTERNAL"/>
 <property name="organizationRoleMap">

 ...
<!-- Example of mapping customer roles to JRS roles -->

 ...
 </property>

Restricting the Mapping to Whitelisted Roles
You may not want every role in your external authority to appear as a role in JasperReports
Server. Use the permittedRolesRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean to specify which external roles become roles in
JasperReports Server. You can use regular expressions to specify multiple roles that match
the expression.

For example, to restrict the roles you create in JasperReports Server to roles that begin
with JRS_ or EXT_ in your external authority, you would configure permittedRolesRegex in
a way similar to the following:

<property name="permittedRolesRegex">
<list>

<value>JRS_.*</value>
<value>EXT_.*</value>

</list>
</property>

JasperReports® Server Authentication Cookbook

52 | LDAP Authentication

To allow all roles, use .* or comment out the property. If the property is omitted, all roles
in the external authority are synchronized with roles in JasperReports Server.

Supporting Additional Characters in Role Names
The default mapping from attributes in your external authentication server to roles in
JasperReports Server supports only alphanumeric characters and underscores. If a role in
your external authority contains unsupported characters, each sequence of unsupported
characters is replaced with a single underscore. For example, ROLE$-DEMO)EXT maps to
ROLE_DEMO_EXT.

You can extend the supported character set by modifying the
permittedExternalRoleNameRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean. Check the sample configuration file for your
deployment to determine which bean to modify.

The default value of the permittedExternalRoleNameRegex property is the regular
expression [A-Za-z0-9_]+. Edit this expression to add supported characters. For example,
the following syntax allows alphanumeric characters, underscores, and the Cyrillic letter Я
(Unicode 042F):

<bean id="mtExternalUserSetupProcessor" class="com.jaspersoft.jasperserver.api.security.
externalAuth.processors.MTExternalUserSetupProcessor"

parent="abstractExternalProcessor">
<property name="userAuthorityService">
<ref bean="${bean.internalUserAuthorityService}"/>

</property>
.....
<property name="permittedExternalRoleNameRegex"

value="[A-Za-z0-9_\u042F]+">
</bean>

Do not allow the following in role names: spaces, periods or |, [], `, ", ', ~, !, #, $, %, ^, &, [,], *, +, =, ;,
:, ?, <, >, }, {,), (,], [, /, or \. Adding these characters in the permittedExternalRoleNameRegex
property may cause unexpected behavior, such as the inability to delete or edit roles containing
those characters.

Mapping the User Organization
Organizations are a feature of JasperReports Server commercial editions. Skip this section if you
have JasperReports Server community edition.

JasperReports® Server Authentication Cookbook

53 | LDAP Authentication

In implementation that supports multiple organizations, all users and roles except for
system administrators and system roles belong to organizations. In turn, each organization
determines the folders that its users can access in the repository. So the final part of
mapping is to determine an organization ID for the external user and roles, based on the
user’s RDN in the directory.

If your JasperReports Server supports multiple organizations, you have two ways to set the
user organization for external users:

l Create a mapping from RDNs in your LDAP server to organizations in JasperReports
Server, as described in Mapping to Multiple Organizations.

l If you want all users to be in just one of your organizations, use the
externalTenantSetupProcessor bean to specify the organization, as described in
Mapping to a Single Organization.

If your JasperReports Server deployment supports only a single organization (all
community deployments and some professional editions), you do not need to set
organization information.

Mapping to Multiple Organizations
LDAP is well suited to mapping users into organizations, because LDAP itself has a
hierarchical structure of user entries that's often used to represent separate organizations,
such as the internal departments of a company. The LDAP tree structure is reflected in the
elements of the RDN of each user entry, and the server maps this RDN into an organization
or hierarchy of organizations for the external user. For example, the users
uid=jack,ou=audit,ou=finance,dc=example,dc=com and
uid=jill,ou=accounting,ou=finance,dc=example,dc=com could be mapped to the
organizations audit and accounting, respectively, both of which are sub-organizations of
finance.

In order to ensure consistency, the server must create the organization of any external user
if the organization does not already exist. The server also creates any organization that
does not exist in the hierarchy of organizations mapped from the user RDN. To avoid
“stray” organizations outside of your intended hierarchy, test your mapping against all
potential user DNs in your LDAP directory.

Organizations created during external user login have an administrator with a default
password. The admin username and password is configurable. See Setting Up Default
Admins for Organizations for more information. For security reasons, you should change
the default password of any organization admin created. See Initialization of JasperReports

JasperReports® Server Authentication Cookbook

54 | LDAP Authentication

Server for External Users for a process to initialize the server, including organization
admins, before going into production with external authentication.

Setting Up Organization Mapping
Specify the following information in the ldapExternalTenantProcessor bean to map the
RDN of the user to a hierarchy of organizations in JasperReports Server:

l excludeRootDn property: Property that specifies whether the base DN, also called
root DN, should be mapped along with the RDN. For example, if the property list for
organizationRDNs contains dc and you don't exclude the base DN of
dc=example,dc=com, the base DN maps to the following: the organization ID example
nested inside the organization ID com nested inside the specified root organization.
The base DN is part of the LDAP URL specified in Setting the LDAP Connection
Parameters.

l organizationRDNs property: A list of attribute names that determines which RDN
values should be mapped to organization names. The names in this list determine
the RDNs that creates a hierarchy of organizations in JasperReports Server. For
example, if you specify the value ou, each RDN with ou=<name> creates a level in the
hierarchy of mapped organizations. If this list is blank or none of the attributes match
the RDN of the user entry, the defaultOrganization property determines the
organization name.

l rootOrganizationId property: The ID of an organization under which any mapped
organizations are created as sub-organizations. If the root organization ID is absent
or blank (""), the server creates the organization(s) mapped in organizationRDNs as
children of the default organization shipped with JasperReports Server.

l defaultOrganization property (optional): The ID of an organization assigned to users
that would otherwise be mapped to a null organization ID.

If excludeRootDn = true, defaultOrganization = "" or is absent, and no organizationRDNs match in
the DN of the user, the user will have a null organization ID. The null organization ID is usually
reserved for special users like the system administrator and allows access the repository folder of
all other organizations. To avoid this mapping, specify a value for defaultOrganization or ensure
that every user has one of the organizationRDNs.

The following example shows the syntax of the ldapExternalTenantProcessor bean and its
properties:

JasperReports® Server Authentication Cookbook

55 | LDAP Authentication

<bean id="ldapExternalTenantProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.ldap.LdapExternalTenantProcessor"
parent="abstractExternalProcessor">
<property name="ldapContextSource" ref="ldapContextSource" />
<property name="multiTenancyService">
<ref bean="internalMultiTenancyService"/></property>

<property name="excludeRootDn" value="false"/>
<!-- only following RDNs matter in creating the organization hierarchy -->
<property name="organizationRDNs">
<list>

<value>o</value>
<value>ou</value>

</list>
</property>
<property name="rootOrganizationId" value="organization_1"/>
<property name="defaultOrganization" value="#{configurationBean.tenantIdNotSupportedSymbols}"/>

...
</bean>

For example, given the ldapExternalTenantProcessor bean configuration above, an LDAP
user with the DN uid=jack,ou=audit,ou=finance, dc=example,dc=com is placed in a
organization named audit which is a child of an organization named finance, which in turn
is a child of organization_1. This example illustrates that it's not possible to map only one
of the two RDN components if they have the same attribute. In other words, the mapping
mechanism does not let you choose to create only the audit or the finance organization;
both are created if you specify ou in the list of organizationRDNs.

By default, the sample-applicationContext-externalAuth-LDAP-mt.xml file maps users to multiple
organizations. If you want to map all users to a single organization, see Mapping to a Single
Organization

Setting Up Default Admins for Organizations
In a multi-organization deployment, JasperReports Server creates a jasperadmin user
whenever you create a new organization. The jasperadmin user is also given a standard
default password. When creating multiple organizations using external authentication, you
can set a different default password for jasperadmin, remove the jasperadmin user, and/or
create additional default users in each new organization created by external
authentication. Optionally, you can encrypt the password in the configuration files. See the
JasperReports Server Security Guide for more information on default users in every
organization.

For security reasons, you should change the default password of any organization admin. See
Initialization of JasperReports Server for External Users for a process to initialize the server,
including organization admins, before going into production with external authentication.

JasperReports® Server Authentication Cookbook

56 | LDAP Authentication

To set up admin users

1. Open your sample-applicationContext-xxx-externalAuth.xml file in a text editor.

2. Locate the externalTenantSetupUsers property in the ldapExternalTenantProcessor bean.

3. The sample contains a bean of class ExternalTenantSetupUser already configured for
jasperadmin.

<property name="externalTenantSetupUsers">
<list>
<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTAbstractExternalProcessor.ExternalTenantSetupUser">
<property name="username" value="${new.tenant.user.name.1}"/>
<property name="fullName" value="${new.tenant.user.fullname.1}"/>
<property name="password" value="${new.tenant.user.password.1}"/>
<property name="emailAddress" value="${new.tenant.user.email.1}"/>
<property name="roleSet">
<set>
<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>
</list>

</property>

4. To create additional admin users for each external organization, create a bean of class
ExternalTenantSetupUser for each admin user you want.

<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTAbstractExternalProcessor.ExternalTenantSetupU
ser">

<property name="username" value="${new.tenant.user.name.2}"/>
<property name="fullName" value="${new.tenant.user.fullname.2}"/>
<property name="password" value="${new.tenant.user.password.2}"/>
<property name="emailAddress" value="${new.tenant.user.email.2}"/>

<property name="roleSet">
<set>

<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>

5. The ${...} syntax above references values configured in the following file:

<js-install>\buildomatic\conf_source\iePro\js.config.properties file.

JasperReports® Server Authentication Cookbook

57 | LDAP Authentication

To set these values, open <js-install>\buildomatic\conf_
source\iePro\js.config.properties and edit the entries there.

new.tenant.user.name.1=jasperadmin
new.tenant.user.fullname.1=jasperadmin
new.tenant.user.password.1=mynewpassword
new.tenant.user.email.1=
new.tenant.user.name.2=anotheradmin
new.tenant.user.fullname.2=Another Admin
new.tenant.user.password.2=anotherpassword
new.tenant.user.email.2=

The property names, for example, new.tenant.user.name.1, are arbitrary. You can use any name
for each property as long as the name in the applicationContext-externalAuth-xxx.xml file matches
the name in the js.config.properties file.

6. If you want to obfuscate the default passwords in the js.config.properties files, encrypt
them as described in the JasperReports Server Security Guide. Obfuscation must be
implemented before you install the server.

7. If you don't want to obfuscate default passwords, you can eliminate the reference to
js.config.properties and instead configure the values directly in the
externalTenantSetupUsers property in the applicationContext-externalAuth-xxx.xml file. For
example:

<property name="username" value="anotheradmin"/>
<property name="fullName" value="Another Admin"/>
<property name="password" value="anotherpassword"/>
<property name="emailAddress" value=""/>

Mapping Organization Names
You have the option to use the organizationMap property in the
ldapExternalTenantProcessor bean to map organization names extracted from your
external authority to organization names in JasperReports Server. To do this, create a
key/value pair for each organization you want to map, specifying the external organization
name as the key and the organization name in JasperReports Server as the value. When
mapping organizations, the server determines the mapped name and uses it as the name,
ID, and description of the organization.

JasperReports® Server Authentication Cookbook

58 | LDAP Authentication

For example, the following would map users in External_Org_1 in the external authority to
JRS_Org_1 in JasperReports Server and users in External_Org_2 in the external authority to
JRS_Org_2 in JasperReports Server:

<property name="organizationMap">
<map>

<entry key="External_Org_1" value="JRS_Org_1" />
<entry key="External_Org_2" value="JRS_Org_2" />

</map>
</property>

The organizationMap property is optional. Any organization in your external authority that
is not listed in organizationMap is mapped to an organization of the same name in
JasperReports Server. However, if an organization in your external authority contains
unsupported characters, each sequence of unsupported characters is replaced with a single
underscore. For example, Human Resources maps to Human_Resources.

The tenantIdNotSupportedSymbols property of the configurationBean bean in the
applicationContext.xml file lists the unsupported characters, including spaces and the
following characters: |, &, *, ?, <, >, /, \, ~, !, #, $, %, ^, [,], or a space. If you want to list
additional characters that should be replaced with an underscore, you can add them in this
bean. However, we do not recommend removing any of the pre-defined characters, as
JasperReports Server may not handle them correctly.

Mapping to a Single Organization
If you have a commercial version of JasperReports Server, you can choose to map all
external users to a single organization, for example, in the following cases:

l You have a commercial JasperReports Server deployment that does not implement
multiple organizations, but instead uses the default organization. This includes
commercial versions licensed for a single organization. In this case, externally
authenticated users must be mapped to the default organization.

l You have multiple organizations in JasperReports Server, but still want all external
users to be placed in a single organization.

The following steps show how to map all external users to a single organization using the
sample-applicationContext-externalAuth-LDAP-mt.xml file:

1. In sample-applicationContext-externalAuth-LDAP-mt.xml, locate the first instance of

JasperReports® Server Authentication Cookbook

59 | LDAP Authentication

the ldapExternalTenantProcessor bean and comment the bean out.

2. Locate the second instance of the ldapExternalTenantProcessor bean and
uncomment it.

3. Set the defaultOrganization property to the organization you want assigned to all
external LDAP users.

The ldapExternalTenantProcessor bean is not available in the community edition. You don't need
to set the organization in the community edition.

ldapExternalTenantProcessor is an example of a processor. For more information about
processors, see Creating a Custom Processor.

The following example places all external users in the default organization, organization_1.

<bean id="ldapExternalTenantProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.ldap.LdapExternalTenantProcessor"
parent="abstractExternalProcessor">

<property name="ldapContextSource" ref="ldapContextSource"/>
<property name="multiTenancyService"><ref bean="internalMultiTenancyService"/></property>
<property name="excludeRootDn" value="true"/>
<property name="defaultOrganization" value="organization_1"/>

</bean>

Make sure you specify a value for the defaultOrganization. If defaultOrganization is left empty,
users may be mapped to the null organization id. This is usually reserved for special users like the
system administrator and allows access to the repository folder of all other organizations.

Setting Up Multiple Providers
The file sample-applicationContext-externalAuth-LDAP[-mt].xml contains an LDAP-specific
authentication manager, ldapAuthenticationManager, configured as follows.

<bean id="ldapAuthenticationManager" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.JSProviderManager">

<constructor-arg index="0">
<list>

<ref bean="ldapAuthenticationProvider"/>
<ref bean="${bean.daoAuthenticationProvider}"/>

</list>
<constructor-arg>

</bean>

JasperReports® Server Authentication Cookbook

60 | LDAP Authentication

The ldapAuthenticationManager bean attempts to authenticate a user session with each
provider in the list in the order they appear. When one of the providers successfully
authenticates the user, the rest of the providers are skipped.

As shown in the example above, you can list other authentication providers with LDAP.

The daoAuthenticationProvider is the default internal authentication using the internal
database. You may keep this provider in the list to access the jasperadmin and superuser
accounts, or any other administrator accounts you've created. Or, if you have configured
system role mapping as described in Mapping Roles to System Roles, you can remove the
daoAuthenticationProvider from the list.

The internal database contains accounts for all of the external users that have previously logged
into the server. However, these external accounts do not contain passwords and cannot be used
for authentication with the default internal authentication, for example when the LDAP server is
unavailable.

Authentication with Microsoft Active Directory
Microsoft Active Directory can be used to authenticate users through the
ldapAuthenticationProvider provided by Spring Security. When setting up an LDAP provider
for Active Directory, you should be aware of the following:

l You must use configure user search to work with the sAMAccountName attribute
containing the user’s login name. See Configuring User Search for Active Directory for
more information.

l You may need to set the Spring referral property in LdapContextSource to follow. See
Configuring the Spring Referral Property for more information.

In addition, the structure of an Active Directory instance can become quite complex and
this can be a challenge when setting up user search.

Configuring User Search for Active Directory
The most important difference in configuration between Active Directory and a standard
LDAP server is the need to search for the sAMAccountName attribute containing the user’s
login name. Because of this requirement, you must use the JSBindAuthenticator bean,
along with the userSearch bean and corresponding property in JSBindAuthenticator.

JasperReports® Server Authentication Cookbook

61 | LDAP Authentication

The following example shows how to configure the userSearch bean for LDAP
authentication with the special syntax for Active Directory. This configuration is only an
example; you need to configure the JSBindAuthenticator and ldapContextSource beans
correctly for your LDAP server, as described earlier in this chapter.

The following example shows how you might set the sAMAccountName attribute.

<bean id="userSearch" class="com.jaspersoft.jasperserver.api.security.externalAuth.wrappers.
spring.ldap.JSFilterBasedLdapUserSearch">

<constructor-arg index="0"><value>cn=Users</value></constructor-arg>
<constructor-arg index="1"><value>(&(sAMAccountName={0}))</value></constructor-arg>
<constructor-arg index="2"><ref bean="ldapContextSource"/></constructor-arg>
<property name="searchSubtree"><value>true</value></property>

</bean>

You must also include a role mapping for any roles you want to import to JasperReports
Server, and you must include an organization mapping if you implement multiple
organizations. For more information, see Mapping the User Roles.

Note that for Active Directory, sAMAccountName must be in constructor-arg index="1" of
the userSearch bean.

Configuring the Spring Referral Property
Some Active Directory servers are unable to automatically follow referrals, which leads to a
PartialResultException being thrown in searches. To handle this, set the Spring referral
property in LdapContextSource to follow, for example:

<bean id="ldapContextSource"
class="com.jaspersoft.jasperserver.api.security.externalAuth.ldap.JSLdapContextSource">

<constructor-arg value="ldap://hostname:389/dc=example, dc=com" />
<property name="userDn">
<value>cn=Administrator, dc=example, dc=com</value>

</property>
<property name="password"><value>password</value></property>
<property name="referral" value="follow"/>

</bean>

Troubleshooting LDAP Configurations
This section describes how to diagnose and resolve some common problems with
configuring external authentication for LDAP.

JasperReports® Server Authentication Cookbook

62 | LDAP Authentication

Planning for Troubleshooting
If you have problems configuring external authentication for LDAP, first make sure that you
have configured logging and located the files you need to diagnose and resolve the issue. If
you need to contact Jaspersoft technical support, they will ask you for this information:

1. Enable logging, including detailed LDAP logging, as described in Configuring Logging
for Debugging. For more information about logging in JasperReports Server, see the
JasperReports Server Administrator Guide.

2. Find your application context file for external authentication. The deployed file is
named applicationContext-externalAuth.xml; the sample file is named
applicationContext-externalAuth-LDAP-mt.xml or applicationContext-externalAuth-
LDAP.xml. This file can be modified in any text editor.

3. Export the LDIF file for your LDAP server. You can view the exported file in an LDIF
editor. Most LDAP browsers and/or LDIF editors support export. If you do not have an
LDIF editor, you can find a free open-source editor on the web, such as Apache
Directory Studio. Many common IDEs, such as Eclipse, also support LDIF plugins.

"Invalid Credentials Supplied" Errors
One common error you will see when trying to log in to JasperReports Server is an invalid
credential error, with the following message:

Invalid credentials supplied.
Could not login to JasperReports Server.

This error can be misleading, because it can come from a wide range of root causes,
including problems that are not directly related to the credentials used. These include:

l Communication issues

l User search issues

"Invalid credentials supplied" errors can be misleading, as they are not always related to the
credentials used.

JasperReports® Server Authentication Cookbook

63 | LDAP Authentication

Problems Communicating with the LDAP Server
If you receive an invalid credentials error, the first thing to check for is errors connecting to
the LDAP server. Search the jasperserver.log file for any stack trace containing the
following:

javax.naming.CommunicationException

If you see this in the logs, you need to dig a little further to find the cause of the
communication exception.

Incorrect Connection URL

Problem
If the URL for the LDAP server is incorrect in applicationContext-externalAuth.xml, you will
see an error such as the following:

ERROR EncryptionAuthenticationProcessingFilter,http-apr-8630-exec-6:218 - An internal error
occurred while trying to authenticate the user.

org.springframework.security.authentication.InternalAuthenticationServiceException:
localhost:10399; nested exception is javax.naming.CommunicationException:
localhost:10399 [Root exception is java.net.ConnectException: Connection refused:
connect]

Solution
To fix this error, locate the following lines in applicationContext-externalAuth.xml and
verify that myLDAPServer is correct hostname for your LDAP server and that and port is
your LDAP server port:

<bean id="ldapContextSource"
class="com.jaspersoft.jasperserver.api.security.externalAuth.ldap.JSLdapContextSource">

<constructor-arg value="ldap://myLDAPServer:port"/>

Edit this information to point to the correct server and port.

JasperReports® Server Authentication Cookbook

64 | LDAP Authentication

Timeout Errors

Problem
If the connection is timing out while trying to talk to the LDAP server, you will see a
"Connection timed out" error in the log, such as:

ERROR EncryptionAuthenticationProcessingFilter,http-apr-8630-exec-3:218 - An internal
error occurred while trying to authenticate the user.
org.springframework.security.authentication.InternalAuthenticationServiceException:
172.17.10.63:10390; nested exception is javax.naming.CommunicationException:
172.17.10.63:10390 [Root exception is java.net.ConnectException: Connection timed out:
connect]

Solution
To fix this error, ensure that the LDAP server is reachable from the server that is hosting
JasperReports Server. Possible causes for connectivity problems include (but are not
limited to): firewalls, anti-virus software, or an incorrectly configured DMZ.

Problems with User Search
"Invalid credentials supplied" errors are frequently caused by problems with the way user
search is configured.

Unable to Find an LDAP Branch

Problem
If JasperReports Server can’t find the user because you have not configured the server to
communicate with an existing branch within LDAP, you may see an "Invalid search base"
error in jasperserver.log. For example:

org.apache.directory.api.ldap.model.exception.LdapNoSuchObjectException: ERR_648 Invalid search
base ou=users,dc=example,dc=com

JasperReports® Server Authentication Cookbook

65 | LDAP Authentication

Solution
To resolve this, check with your LDAP admin that the search base you are using exists
within your LDAP directory. The search base is usually specified in the <constructor-arg
index="0"> parameter in the userSearch bean in applicationContext-externalAuth.xml.

Incorrect or Missing Partition

Problem
If JasperReports Server can’t find the user because the search is not configured to look in
the correct partition, you may see a "Cannot find a partition" error in jasperserver.log, for
example:

ERR_268 Cannot find a partition for ou=users,o=mojo55:
org.apache.directory.api.ldap.model.exception.LdapNoSuchObjectException: ERR_268 Cannot find a
partition for ou=users,o=mojo55

Solution
This error can arise if you are importing your LDIF file. In this case, the partitions may not
be created automatically, and therefore are not searchable. Check the LDAP connection
URL in the ldapContextSource bean in applicationContext-externalAuth.xml. If the partition
is not present, you can append it to the bean.

Invalid Search Filter

Problem
If the search filter is not constructed correctly in your applicationContext-externalAuth.xml
file your connection will fail. This error can be tricky because it does not always give an
error code in the log. Instead, the query is valid, but when it searches your LDAP directory,
it simply returns nothing:

DEBUG FilterBasedLdapUserSearch,http-apr-8630-exec-8:107 - Searching for user 'hwilliams', with

JasperReports® Server Authentication Cookbook

66 | LDAP Authentication

user search [searchFilter: '(sAMAccountName={0})', searchBase: 'ou=users', scope: subtree,
searchTimeLimit: 0, derefLinkFlag: false]
DEBUG SpringSecurityLdapTemplate,http-apr-8630-exec-8:211 - Searching for entry under DN 'o=mojo',
base = 'ou=users', filter = '(sAMAccountName={0})'

An invalid search filter is a filter that is malformed or cannot be loaded. You can also have a
correctly formed search filter that returns incorrect results. See User Not Found By Valid Search
Filter for more information.

Solution
If you suspect the search filter might be invalid, run the query in a third-party LDAP client
and see if it returns any users. If the query does not return any users, correct the query to
retrieve the users you want, then update your applicationContext-externalAuth.xml file with
the correct query.

Failure to Bind the User

Problem
In some cases, the user is found, but the bind process fails. You might see an error in the
logs such as the following:

Failed to bind as uid=myUser,OU=Users,OU=MTC-Users:
org.springframework.ldap.AuthenticationException: [LDAP: error code 49 - 80090308: LdapErr: DSID-
0C09042A, comment: AcceptSecurityContext error, data 52e, v3839

Solution
A common reason for this is because of a mismatch in the DN format between what you
specify in your search query versus what is acceptable for your specific version of LDAP.
The precise solution depends on the implementation and configuration of your LDAP
server. For more information, please consult documentation for your LDAP solution.

JasperReports® Server Authentication Cookbook

67 | LDAP Authentication

User Not Found By Valid Search Filter

Problem
A valid search filter that runs and returns results may not find all intended users. In this
case you will see the same failed authentication message in the log as you would for an
unauthorized user:

FilterBasedLdapUserSearch,http-apr-8630-exec-8:107 - Searching for user 'myUser', with user search
[searchFilter: '(uid={0})', searchBase: 'ou=users, o=org1', scope: subtree, searchTimeLimit: 0,
derefLinkFlag: false]
DEBUG SpringSecurityLdapTemplate,http-apr-8630-exec-8:211 - Searching for entry under DN '', base
= 'ou=users,o=org1', filter = '(uid={0})'
DEBUG ProviderManager,http-apr-8630-exec-8:152 - Authentication attempt using
com.jaspersoft.jasperserver.multipleTenancy.MTDaoAuthenticationProvider
DEBUG SimpleUrlAuthenticationFailureHandler,http-apr-8630-exec-8:67 - Redirecting to
/login.html?error=1
DEBUG DefaultRedirectStrategy,http-apr-8630-exec-8:36 - Redirecting to '/jasperserver-
pro/login.html?error=1'

Solution
This can happen for a number of causes. One of the most common is that the search filter
is valid but is not returning the set of users you want. You could have misconfigured your
query or you could be pointing to the wrong query in your applicationContext-
externalAuth.xml file. Test the query shown in the log by running it in a third-party LDAP
client and see if it returns the missing user.

To fix an incorrect query, look for the search filter in the applicationContext-
externalAuth.xml file. Search filters are declared in the ldapAuthenticationManager bean,
and the filter definition containing the query string is defined later in the same file. Check
to make sure the search string is correct and that ldapAuthenticationManager is pointing to
the correct search filter.

Login Page Not Loading
Another common symptom with multiple causes is failure to load the login page.

A blank page is shown instead.

JasperReports® Server Authentication Cookbook

68 | LDAP Authentication

Invalid Application Context File

Problem
If your application context file, applicationContext-externalAuth.xml, is not a valid XML file,
the login page does not load. You may see a stack trace in the logs, specifying the invalid
file:

Context initialization failed
org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line <lineNumber> in XML
document from ServletContext resource [/WEB-INF/applicationContext-externalAuth-LDAP-mt.xml] is
invalid; nested exception is org.xml.sax.SAXParseException; lineNumber: <lineNumber>;
columnNumber: <columnNumber>; The element type "property" must be terminated by the matching end-
tag "</property>"

Solution
Usually the stack trace shows the name of the invalid file, the location in the file that is
causing the problem, and the error that triggered the stack trace. The resolution depends
on the error. In some cases, the location in the stack trace will not be the location of the
root problem in the file.

In the example above, there is a missing ending tag for property. To fix this, add the tag at
the location specified by <lineNumber> and <columnNumber>.

XML Special Characters in Role Names

Problem
Role names can't contain certain special characters, including the XML reserved characters
<, >, &, ', ", and \. If you use a reserved character in a role name in your XML file,
JasperReports Server attempts to interpret it as XML, which results in a stack trace. The
precise error depends on the special character. For example, if you use an ampersand (&)
in a role name, you see an error like this:

context initialization failed
org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line <lineNumber>
in XML document from ServletContext resource [/WEB-INF/applicationContext-externalAuth-
LDAP-mt.xml] is invalid; nested exception is org.xml.sax.SAXParseException; lineNumber:
<lineNumber>; columnNumber: <columnNumber>; The entity name must immediately follow the

JasperReports® Server Authentication Cookbook

69 | LDAP Authentication

'&' in the entity reference. at
org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions
(XmlBeanDefinitionReader.java:397)

Solution
In general, it is safest to restrict role names to alpha-numeric characters. If extended
characters are necessary for your naming convention, choose non-reserved characters.

Missing Bean Definition

Problem
Jasper is trying to read a bean definition that doesn’t exist. In the error message, you see
reference to the <type of bean>, which typically refers to the actual java class name for
that bean definition. The bean name in the applicationContext-externalAuth.xml file may
appear later in the error:

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean
with name '<type of bean>' defined in ServletContext resource [/WEB-
INF/applicationContext-externalAuth-LDAP-mt.xml]: Cannot resolve reference to bean
'<myBean>' while setting bean property 'userSearch'; nested exception is
org.springframework.beans.factory.NoSuchBeanDefinitionException: No bean named
'<myBean>' is defined

Solution
Check the following:

1. Make sure the bean is defined in your application context XML file.

2. Verify that the name of the bean is correct in your applicationContext-
externalAuth.xml. If the bean name is spelled wrong, it won't be found.

JasperReports® Server Authentication Cookbook

70 | LDAP Authentication

Missing Java Class

Problem
JasperReports Server can't find a Java class referenced in the XML file. The stack trace
shows the name of the class:

Caused by: org.springframework.beans.factory.CannotLoadBeanClassException: Cannot find class
[className] for bean with name 'ldapAuthenticationProvider' defined in ServletContext resource
[/WEB-INF/applicationContext-externalAuth-LDAP-mt.xml]; nested exception is
java.lang.ClassNotFoundException: <className>

Solution
Check the following:

1. Make sure the jar containing the specified class can be found in the classpath, (for
example, \jasperserver-pro\WEB-INF\lib).

2. Verify that the name of the class is correct in your XML file. If the class name is
spelled wrong, it won't be found as the name won't match, even if the class is
present in a jar in the classpath.

Login Displays Security Check Page

Problem
JasperReports Server displays the j_spring_security_check page:

JasperReports® Server Authentication Cookbook

71 | LDAP Authentication

Figure 4: j_spring_security_check Page

In the jasperserver.log, look for DefaultLdapAuthoritiesPopulator and problems locating
roles:

DefaultLdapAuthoritiesPopulator,http-apr-8630-exec-9:211 - Searching for roles for user 'guest01',
DN = 'cn=guest 01,cn=Users,dc=test,dc=com', with filter (objectClass=group) in search base
'DC=test,DC=com'
SpringSecurityLdapTemplate,http-apr-8630-exec-9:150 - Using filter: (objectClass=group)
HttpSessionSecurityContextRepository,http-apr-8630-exec-9:304 - SecurityContext is empty or
contents are anonymous - context will not be stored in HttpSession.
SecurityContextPersistenceFilter,http-apr-8630-exec-9:97 - SecurityContextHolder now cleared, as
request processing completed

Solution
Errors with DefaultLdapAuthoritiesPopulator indicate that no roles could be found for this
user. As part of the login process, the user is both authenticated and authorized.
JasperReports Server uses LDAP and DefaultLdapAuthoritiesPopulator to determine which
roles to assign to the user. A user needs at least ROLE_USER to log in. If no roles are
assigned to the user, the login fails as above.

Ensure that you've configured role search correctly in the
JSDefaultLdapAuthoritiesPopulator bean in your LDAP file. Make sure that it is using the
correct branch in your LDAP.

Adding a Custom Processor
To create custom code to run on the server after the user has been authenticated, you can
create a custom processor and add it to the processors list for the externalUserProcessors
property of the externalDataSynchronizer bean. For example, you can add a processor that

JasperReports® Server Authentication Cookbook

72 | LDAP Authentication

calls code to automatically create a user home folder for the authenticated user. See
Creating a Custom Processor.

Restarting JasperReports Server
When you've configured all the beans in the appropriate files, restart JasperReports Server
to make the changes take effect.

To test your configuration, navigate to the JasperReports Server login page. If the server
and LDAP are configured correctly, you can log into JasperReports Server with credentials
stored in your LDAP directory. Try several users with different roles or organizations to
verify your configuration.

JasperReports® Server Authentication Cookbook

73 | CAS Authentication

CAS Authentication
Central Authentication Service (CAS) is an open source, Java-based authentication server
that supports for single sign-on (SSO) across web applications, including those running on
different application servers. When a user requests a page from a CAS-enabled web
application, the application redirects the user to the CAS server login page. Thereafter,
logged-in users can navigate among all participating applications without needing to log in
again. Each application communicates with the CAS server in the background to verify that
the user is valid before providing access to its resources.

With the CAS protocol, the client application (such as JasperReports Server) never receives
or transmits the user’s password. As a result, the client application doesn't need to apply
any encryption to protect passwords. However, unlike LDAP, CAS does not provide any user
context, such as roles or organizations, that can be mapped to JasperReports Server.
Instead, you can configure any organization and static roles that apply to each CAS-
authenticated user, or pull user details from an external data source.

This chapter shows how JasperReports Server’s default authentication mechanism using
Spring Security can be configured to perform external authentication with CAS. The
JasperReports Server deployment includes several sample files that provide the beans for
CAS integration. The implementation of these beans is sufficient to enable CAS
authentication but may not provide enough functionality in a complex deployment. Further
customization of these beans is beyond the scope of this guide.

This chapter assumes that you're familiar with security concepts such as certificates,
tokens, and cookies. The first section explains how to install a CAS server for testing. All
examples refer to the test server and assume you're using the Apache Tomcat application
server. When configuring JasperReports Server to use CAS in production, you must take
into account any differences between application servers and the contents of certificates.

This chapter contains the following sections:

l Overview of External CAS Authentication

l CAS Server for Testing

l Configuring JasperReports Server for CAS Authentication

l Configuring Java to Trust the CAS Certificate

l Beans to Configure

JasperReports® Server Authentication Cookbook

74 | CAS Authentication

l Setting CAS Authentication Properties

l Mapping the User Roles

l Setting the User Organization

l Restarting JasperReports Server

Overview of External CAS Authentication
This section describes how JasperReports Server integrates Spring Security to perform
external CAS authentication, including SSO.

The following figure shows the general protocol during external CAS authentication:

JasperReports® Server Authentication Cookbook

75 | CAS Authentication

Figure 5: General Steps of External CAS Authentication

The overview in this section explains the major steps involved in the protocol between the
CAS server and JasperReports Server, as well as the Spring Security beans involved. This
chapter does not explain CAS proxies, but it does cover the Spring Security beans used to
configure JasperReports Server’s response to CAS proxies.

See https://www.apereo.org/projects/cas and https://apereo.github.io/cas/7.0.x/index.html
for more information.

https://www.apereo.org/projects/cas
https://apereo.github.io/cas/7.0.x/index.html

JasperReports® Server Authentication Cookbook

76 | CAS Authentication

The interaction between the user’s browser, JasperReports Server, and the CAS server
includes these steps:

1. An unauthenticated user requests any page in JasperReports Server.

With SSO, JasperReports Server does not have a login page for users to bookmark.
Instead, users can bookmark their home page or any page that allows it in
JasperReports Server. As a result, every user goes through this step for every page
they request from JasperReports Server, thereby securing every possible access to
JasperReports Server.

Internal users, such as jasperadmin or superuser, log in by going directly to the login page, for
example,
http://host1:8080/jasperserver[-pro]/login.html.

2. JasperReports Server detects that the user is not logged in and replies with a redirect to
the CAS login page.

The redirect URL contains the service parameter that tells CAS where to redirect the
user after successful authentication. This URL activates JasperReports Server’s user
authentication. For example:

http://host2:8443/cas/login?service=http://host1:8080/jasperserver[-pro]/j_spring_
security_check.

URLs may appear translated when viewed in browsers or in log files. For example, the previous
URL might be written
http://host2:8443/cas/login?service=http%3A%2F%2Fhost1:8080%2Fjasperserver%2Fj_spring_
security_check.

3. The user’s browser requests the CAS login page from the CAS server. If the user has
logged in previously and has a Ticket Granting Ticket (TGT) cookie, the TGT is included in
the request.

4. The CAS server attempts to authenticate the user’s credentials.

l If the CAS server detects the TGT cookie in the user’s login request, CAS skips
verification of the user credentials.

l If there's no TGT cookie, CAS serves its login page to the user. When the user enters a
username and password, CAS verifies them against its own data source.

After the user authenticates correctly, CAS issues the user a service ticket (for
example: http://host1:8080/jasperserver-[pro]/j_spring_security_check?ticket=ST-
8670-123buTvFFjo980) and a TGT cookie if one is not present. The TGT cookie can be
used for single sign-on with other applications that use the same CAS server.

JasperReports® Server Authentication Cookbook

77 | CAS Authentication

If the user has disabled cookies, the CAS login protocol still works, but single sign-on fails.
When no cookie is detected on the user’s browser, the user is prompted to log into the CAS
server every time he accesses a client application.

5. CAS redirects the user to the JasperReports Server with the service ticket in the redirect
URL.

6. The JasperReports Server authentication request filter is activated by the request for the
j_spring_security_check resource. As part of the user authentication process, JasperReports
Server establishes a secure HTTP connection (HTTPS) to CAS to validate the service ticket.
If the ticket is valid, CAS replies with the username; otherwise, CAS responds with an error.

7. If an external data source is configured, JasperReports Server connects to the data
source and requests the user organization and roles associated with the username
returned by CAS. If the organization and roles are configured statically, this step is skipped.

8. JasperReports Server creates the principal object that establishes the user’s session. The
username, roles, and organization are also synchronized with the internal database, where
the user account is marked as an external user. For more information, see Synchronization
of External Users.

9. As with the default internal authorization, JasperReports Server now sends the requested
content to the user.

Content sent to the user is subject to authorization. For example the home page has
different options for administrators than for regular users, as determined by the roles of
the user in the principal object.

When comparing these steps with those in Default Internal Authentication, you'll notice
several significant differences:

l JasperReports Server must redirect to the CAS login page instead of its own.

l JasperReports Server must receive the service ticket as part of the security check.

l JasperReports Server must process the service ticket and communicate with the CAS
server over HTTPS.

l The roles and organization ID in the user’s principal object are mapped from the
response to the request for user details.

l The internal database must be synchronized with any new information in the user’s
principal object.

JasperReports® Server Authentication Cookbook

78 | CAS Authentication

CAS Server for Testing
This section describes how to set up a simple CAS server for testing purposes. If you have a CAS
server you want to use, you can skip this section.

The CAS server is Java servlet built on the Spring Framework. Its primary responsibility is
to authenticate users and grant access to CAS-enabled services by issuing and validating
tickets. You can download the server from the following page:
https://www.apereo.org/projects/cas.

As described in the next section, the CAS validation service accepts only requests using a
secure transport. This means you must have a valid certificate on your CAS server machine,
and your CAS client (the JasperReports Server JVM) must be configured to trust that
certificate. There are two important points to keep in mind:

l Test with the CAS server on a separate machine, not the localhost where
JasperReports Server is installed. For this purpose, you can use a virtual machine.

l Most issues in configuring CAS are caused by the improper use of certificates. The
single most common failure occurs when the hostname in the server’s certificate
doesn’t match the actual hostname.

To create a certificate for the server you must use the Java keytool utility. Run the
following command on the host of the CAS server:
keytool -genkey -alias tomcat -keyalg RSA -validity 365 -keystore <filename>

The utility prompts you for several pieces of information, two of which are critical. When
prompted for your first and last name enter the hostname of the CAS server. When asked
for the keystore password use changeit to match what Apache Tomcat uses by default.

After installation of the CAS server, configure the Apache Tomcat application server that's
running the CAS server so it uses the certificate in the keystore created above. Modify
$CATALINA_HOME/conf/server.xml, locate the commented section about setting up a
secure HTTPS connector, and follow the instructions it contains. Restart the Tomcat server
and test that it accepts HTTPS connections.

For further information about CAS, including deployment information, documentation, and
community links, refer to the CAS website https://www.apereo.org/projects/cas. In
particular, the page https://apereo.github.io/cas/7.0.x/installation/Troubleshooting-
Guide.html can help you deploy your certificates.

https://www.apereo.org/projects/cas
https://www.apereo.org/projects/cas
https://apereo.github.io/cas/7.0.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/7.0.x/installation/Troubleshooting-Guide.html

JasperReports® Server Authentication Cookbook

79 | CAS Authentication

CAS server is based on Spring Security, like JasperReports Server. In a production environment,
you must replace the built-in authentication for testing with an external authority that validates your
users when they log into CAS. As with JasperReports Server, you can configure CAS with a variety
of external authorities to suit your needs, including LDAP. However, the external authority used by
CAS may not be accessible to JasperReports Server.

Follow the CAS documentation to ensure you create a secure and robust configuration on your
CAS server.

Configuring Java to Trust the CAS Certificate
The CAS protocol requires that the response to the service validation be established over
HTTPS for security. This connection is established from the Java classes of Spring Security.
So you need to configure the Java security system. Java security must trust the certificate
it receives from the CAS server, otherwise it refuses to connect. This trust is based on two
factors:

1. The host name in the certificate has to match the host name in the URL of the
connection. Certain JVMs require hostnames as opposed to IP addresses, even if the
IP addresses match. If you're using a CAS test server, see CAS Server for Testing for
instructions to create a certificate in a keystore.

2. You must tell Java to trust the signing certificate:

a. On the CAS server, export your CAS certificate using the command line keytool
utility. For example:

keytool -exportcert -alias cascert -file cascertfile.cer

Enter the password to the keystore when prompted.

b. Copy the CAS certificate you just exported to the JasperReports Server host and
import it to the Java certificate store. For example, to import the certificate to the
default truststore location, you might use the following:

keytool -importcert -alias cascert -keystore $JAVA_HOME/jre6/lib/security/cacerts -file cascertfile.cer

Enter the password to the keystore when prompted.

JasperReports® Server Authentication Cookbook

80 | CAS Authentication

A non-default cacerts location can be specified using the -Djavax.net.ssl.trustStore JVM
parameter.

Configuring JasperReports Server for CAS
Authentication
We provide sample files for configuring JasperReports Server for external CAS
authentication. These files are specific to your edition (commercial or community). CAS
sample files are located in the <js-install>/samples/externalAuth-sample-config directory of
your JasperReports Server.

The sample files in your deployment that integrate Spring Security’s default CAS
implementation with JasperReports Server may include the following:

l sample-applicationContext-externalAuth-CAS.xml (community only): Sample file for
integrating CAS with JasperReports Server, assigning the same roles to all users.

l sample-applicationContext-externalAuth-CAS-staticRoles.xml (community only):
Sample file for integrating CAS with JasperReports Server, assigning additional roles
to a list of administrative users.

l sample-applicationContext-externalAuth-CAS-db-mt.xml (commercial editions only):
Sample file for integrating CAS with JasperReports Server with support for multiple
organizations, retrieving role and organization data from a JDBC database.

l sample-applicationContext-externalAuth-CAS-LDAP-mt.xml (commercial editions
only): Sample file for integrating CAS with JasperReports Server with support for
multiple organizations, retrieving role and organization data from an LDAP server.

To use LDAP or an external database with CAS, configure the LDAP or database connection
parameters in default_master.properties before installing JasperReports Server. You can set up
encryption for the password to your LDAP server or database at that time. See the JasperReports
Server Security Guide for more information.

To configure JasperReports Server to work with your implementation of CAS, select the
sample configuration file you want, then modify and deploy it:

1. Make a copy of the CAS sample file and name it in the form applicationContext-
<Name>.xml, for example, applicationContext-externalAuth-CAS-staticRoles-mt.xml.

2. Edit the file you created and configure the beans correctly for your deployment, as

JasperReports® Server Authentication Cookbook

81 | CAS Authentication

described in the following sections.

3. Place the modified applicationContext-externalAuth-CAS-staticRoles-mt.xml file in the
<js-webapp>/WEB-INF directory.

<js-webapp> is the location of the JasperReports Server web application in your application server,
or where you're modifying the configuration files, as explained in WEB-INF Directory Location. The
rest of this chapter refers to file names alone.

Beans to Configure
The sample-applicationContext-externalAuth-CAS*.xml files contain the beans needed to
enable and perform CAS authentication. This section summarizes the beans you need to
modify to configure JasperReports Server to work with your CAS provider.

l externalAuthProperties: Configure this bean to specify the external authentication
properties needed by the JasperReports Server API, including the HTTPS URL where
tickets are validated on the CAS server and the login and logout URLs for external
users. See Configuring externalAuthProperties for more information.

l casServiceProperties: Configure this bean to specify the Spring CAS API properties,
such as the service parameter (the JasperReports Server URL to which CAS redirects
after successful authentication) and whether to disregard the TGT (sendRenew).

l externalUserSetupProcessor: Configure this bean to specify how to synchronize
external users and roles with the internal jasperserver database.

l externalDataSource (optional): Configure this bean to specify an external data source
for casJDBCUserDetailsService to query for user details. External details can be
obtained from other data sources, such as LDAP. To enable an external data source,
you must implement the ExternalUserDetailsService interface and substitute it in the
externalDataSynchronizer bean.

l casJDBCUserDetailsService (optional): Configure this bean with the SQL queries to
extract external user information from the data source specified in the
externalDataSource bean.

Setting CAS Authentication Properties
Configure the following beans to set up the properties related to CAS authentication:

JasperReports® Server Authentication Cookbook

82 | CAS Authentication

l casServiceProperties: Configure this bean to set the properties related to Spring’s
CAS service.

l externalAuthProperties: Configure this bean to set properties specific to Jaspersoft’s
implementation of CAS.

Configuring casServiceProperties
The casServiceProperties bean implements the Spring JSCASServiceProperties bean and
stores the properties related to Spring’s CAS: service and sendRenew properties. Configure
the following bean to set up the security check locations:

l casServiceProperties – This bean has the following properties:

o service property – Configure this property with the JasperReports Server URL
that receives and processes tickets for HTTP connections. Make sure to include
the j_spring_security_check pattern at the end of the URL; this pattern
activates user authentication (service ticket validation) in the Spring Security
filter chain.

o sendRenew: When the user is redirected to CAS for authentication, the
sendRenew property (true|false) determines whether or not to disregard TGT
(default).

For example, to enable the security check on your localhost, you would set the pattern as
in this example:

<bean id="casServiceProperties" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.cas.JSCASServiceProperties">

<property name="service" value="http://localhost:8080/jasperserver-pro/
j_spring_security_check"/>

<property name="sendRenew" value="false"/>
</bean>

Configuring externalAuthProperties
The externalAuthProperties bean stores properties specific to Jaspersoft’s external
authentication API. For CAS authentication, configure the externalAuthProperties bean to
specify the following URLs for communication with the CAS server:

• ssoServerLocation property — Specifies the HTTPS URL where tickets are validated
on the CAS server.

JasperReports® Server Authentication Cookbook

83 | CAS Authentication

• externalLoginUrl property — Specifies the login URL for external users. Can be set
relative to ssoServerLocation.

• logoutUrl property — Specifies the logout URL for external users. Can be set relative
to ssoServerLocation.

The following example shows how you might set these beans:

<bean id="externalAuthProperties" class="com.jaspersoft.jasperserver.api.security.
externalAuth.ExternalAuthProperties">

<property name="externalLoginUrl" value="#ssoServerLocation#/login"/>
<property name="logoutUrl" value="#ssoServerLocation#/logout"/>
<property name="ssoServerLocation" value="https://casserver:8443/cas"/>

</bean>

Mapping the User Roles
You can define user roles in one of the following ways:

l Define user roles statically: Define static roles for administrative and non-
administrative users using the externalUserSetupProcessor or
mtExternalUserSetupProcessor bean. This is the most common option. See Defining
Static Roles.

l Retrieve user roles from an external data source: See Retrieving User Roles from an
External Data Source.

Defining Static Roles
If you're mapping all your external users to a single organization, you can assign static
roles to users. This lets you specify a list of administrative users and roles, and a list of
roles for non-administrative users. To define static roles, use the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. To set up static roles,
locate the version of the bean used in your sample file and configure the following
properties:

l adminUserNames property: A list of usernames granted internal administrator
privileges in JasperReports Server. The username values must exactly match the
usernames authenticated and returned by the external authority.

l defaultAdminRoles property: A list of JasperReports Server internal roles. These are

JasperReports® Server Authentication Cookbook

84 | CAS Authentication

assigned to every user in the list of administrators.

l defaultInternalRoles property: A list of JasperReports Server roles assigned to every
user not in the list of administrators.

The following example shows how to use the mtExternalUserSetupProcessor bean to define
static roles. The configuration for externalUserSetupProcessor is similar:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">

...
 <property name="adminUsernames">
 <list>
 <value>myorgadmin</value>
 </list>
 </property><property name="defaultAdminRoles">
 <list>
 <value>ROLE_USER</value>
 <value>ROLE_ADMINISTRATOR</value>
 </list>
 </property>
 <property name="defaultInternalRoles">

 <list>
 <value>ROLE_USER</value>
 </list>
 </property>
...

Retrieving User Roles from an External Data Source
If the static configuration available with CAS is insufficient, you can import external user
information, like roles and organization ID, from an external data source. Imported roles
are stored in the internal jasperserver database (synchronization); they can be mapped to
internal JasperReports Server roles or created as new external roles.

To retrieve external roles, the externalUserDetailsService property in the
externalDataSynchronizer bean needs to point to an ExternalUserDetailsService
implementation. The sample file includes CasJDBCUserDetailsService, which connects to an
external MySQL database. externalUserDetailsService then makes the external data
available to externalUserSetupProcessor or mtExternalUserSetupProcessor, which is
responsible for mapping the external information and synchronizing it with the database.

JasperReports® Server Authentication Cookbook

85 | CAS Authentication

The casJDBCUserDetailsService bean is configured with the following properties:

• dataSource property: Points to external database to query user details

• usersByUsernameQuery property: SQL query returning a list of user properties for
the user name to be processed by externalUserSetupProcessor or
mtExternalUserSetupProcessor. The result is returned as a map where keys are the
column names in the query.

• authoritiesByUsernameQuery property: SQL query returning a list of user roles for
the user name.

The externalUserSetupProcessor or mtExternalUserSetupProcessor bean has the following
properties:

l defaultInternalRoles property: A list of internal roles assigned to the external user by
default.

l organizationRoleMap property: A list of key/value pairs that map external role names
to internal ones. For a commercial JasperReports Server deployment, you need to
choose the level at which the role is assigned:

o To map to an internal role at the organization level, append |* to the name of
the internal role, for example, ROLE_EXTERNAL_USER|*. Roles mapped at the
organization level do not have administrative privileges.

o To map to an internal role at the system (null) level, do not modify the internal
role name, for example, ROLE_EXTERNAL_ADMINISTRATOR. Roles at the system
level are usually reserved for special users like the system administrator and
allow access to the repository folders of all organizations.

The following shows how you might configure the externalUserSetupProcessor bean:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor" parent="abstractExternalProcessor">
<property name="organizationRoleMap">

<map>
<!-- Example of mapping customer roles to JRS roles -->
<entry>

<key>
<value>ROLE_ADMIN_EXTERNAL_ORGANIZATION</value>

</key>
<!-- JRS role that the <key> external role is mapped to-->
<value>ROLE_ADMINISTRATOR</value>

</entry>
</map>

</property>

JasperReports® Server Authentication Cookbook

86 | CAS Authentication

Setting Default Roles
You can assign roles to all users using the defaultInternalRoles property of
externalUserSetupProcessor or mtExternalUserSetupProcessor. The following example
shows how to use this property in externalUserSetupProcessor to assign ROLE_USER to all
users, in addition to the roles assigned by mapping:

<property name="defaultInternalRoles">
<list>

<value>ROLE_USER</value>
</list>

</property>

Avoiding Role Collisions
If an external role has the same name as an internal role at the same organization level,
JasperReports Server adds a suffix such as _EXT to the external role name to avoid
collisions. For example, a user with the externally defined role ROLE_ADMINISTRATOR is
assigned the role ROLE_ADMINISTRATOR_EXT in the JasperReports Server database. This
ensures that internal administrator accounts like jasperadmin and superuser can still log in
as internal administrators with the associated permissions.

You can set the extension in the conflictingExternalInternalRoleNameSuffix property in the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. If the property doesn't
appear in the bean, the extension is still implemented but defaults to _EXT. The following
example shows how to configure this property:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">
<property name="conflictingExternalInternalRoleNameSuffix"

value="_EXTERNAL"/>
 <property name="organizationRoleMap">

 ...
<!-- Example of mapping customer roles to JRS roles -->

 ...
 </property>

JasperReports® Server Authentication Cookbook

87 | CAS Authentication

Restricting the Mapping to Whitelisted Roles
You may not want every role in your external authority to appear as a role in JasperReports
Server. Use the permittedRolesRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean to specify which external roles become roles in
JasperReports Server. You can use regular expressions to specify multiple roles that match
the expression.

For example, to restrict the roles you create in JasperReports Server to roles that begin
with JRS_ or EXT_ in your external authority, you would configure permittedRolesRegex in
a way similar to the following:

<property name="permittedRolesRegex">
<list>

<value>JRS_.*</value>
<value>EXT_.*</value>

</list>
</property>

To allow all roles, use .* or comment out the property. If the property is omitted, all roles
in the external authority are synchronized with roles in JasperReports Server.

Supporting Additional Characters in Role Names
The default mapping from attributes in your external authentication server to roles in
JasperReports Server supports only alphanumeric characters and underscores. If a role in
your external authority contains unsupported characters, each sequence of unsupported
characters is replaced with a single underscore. For example, ROLE$-DEMO)EXT maps to
ROLE_DEMO_EXT.

You can extend the supported character set by modifying the
permittedExternalRoleNameRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean. Check the sample configuration file for your
deployment to determine which bean to modify.

JasperReports® Server Authentication Cookbook

88 | CAS Authentication

The default value of the permittedExternalRoleNameRegex property is the regular
expression [A-Za-z0-9_]+. Edit this expression to add supported characters. For example,
the following syntax allows alphanumeric characters, underscores, and the Cyrillic letter Я
(Unicode 042F):

<bean id="mtExternalUserSetupProcessor" class="com.jaspersoft.jasperserver.api.security.
externalAuth.processors.MTExternalUserSetupProcessor"

parent="abstractExternalProcessor">
<property name="userAuthorityService">
<ref bean="${bean.internalUserAuthorityService}"/>

</property>
.....
<property name="permittedExternalRoleNameRegex"

value="[A-Za-z0-9_\u042F]+">
</bean>

Do not allow the following in role names: spaces, periods or |, [], `, ", ', ~, !, #, $, %, ^, &, [,], *, +, =, ;,
:, ?, <, >, }, {,), (,], [, /, or \. Adding these characters in the permittedExternalRoleNameRegex
property may cause unexpected behavior, such as the inability to delete or edit roles containing
those characters.

Setting the User Organization
Organizations are a feature of JasperReports Server commercial editions. Skip this section if you
have JasperReports Server community edition.

Spring’s default CAS configuration supports only user authentication. However, you can
extend this to set organizations in one of two ways:

• Extract organization data with an additional technology, such as LDAP or a JDBC
database. See Mapping to Multiple Organizations.

• Use the defaultOrganization property of the externalTenantSetupProcessor bean to
set a single organization assigned to all external users. See Mapping to a Single
Organization.

Mapping to Multiple Organizations
To assign your external CAS users to multiple organizations in JasperReports Server, you
need an additional technology like LDAP or JDBC to supply the user’s organization data.
We provide sample files that show how to extract the organization data from a third-party

JasperReports® Server Authentication Cookbook

89 | CAS Authentication

technology and integrate it with CAS authentication. These files are described briefly; an in-
depth discussion is beyond the scope of this guide.

Setting Multiple Organizations Using LDAP
You can configure your connection to the LDAP server in one of two ways:

• Configure the connection during installation of JasperReports Server by configuring
the external.ldapUrl, external.ldapDn, and/or external.ldapPassword properties in
default_master.properties. You have the option to encrypt any of the
LDAP connection parameters. This is the preferred method for setting the LDAP
connection parameters. See the JasperReports Server Security Guide for more
information.

• If you have an existing JasperReports Server and can't reinstall it for some reason,
you can configure the connection properties directly in your sample-
applicationContext-externalAuth-CAS-mt.xml file. In this case, the properties,
including the password, can't be encrypted. See Setting the LDAP Connection
Parametersfor more information.

The following file gives an example of how to assign users to multiple organizations by
integrating CAS with LDAP:

<js-install>/samples/externalAuth-sample-config/sample-applicationContext-externalAuth-
CAS-LDAP-mt.xml

This sample uses the ldapExternalTenantProcessor bean to extract an organization
hierarchy from the user’s distinguished name. For more information about the
ldapExternalTenantProcessor bean, see Mapping to Multiple Organizations in LDAP
Authentication.

Setting Multiple Organizations Using JDBC
You can configure your connection to the database in one of two ways:

• Configure the connection during installation of JasperReports Server by configuring
the external.jdbc.driverClassName, external.jdbc.url, external.jdbc.username, and/or
external.jdbc.Password properties in default_master.properties. You have the option
to encrypt any of the LDAP connection parameters. This is the preferred method for
setting the database connection parameters. See the JasperReports Server Security
Guide for more information.

JasperReports® Server Authentication Cookbook

90 | CAS Authentication

• If you have an existing JasperReports Server and can't reinstall it for some reason,
you can configure the connection properties directly in your sample-
applicationContext-externalAuth-CAS-db-mt.xml file. In this case, the properties,
including the password, can't be encrypted. See Setting the Database Connection
Parameters for more information.

The following file gives an example of how to assign users to multiple organizations by
integrating CAS with a JDBC database:

<js-install>/samples/externalAuth-sample-config/sample-applicationContext-externalAuth-
CAS-db-mt.xml

This sample uses the detailsQuery property of the casJDBCUserDetailsService bean to
extract tenantId from an external database using an appropriate SQL query. Note that the
tenantId column name has to be returned by the SQL query in order for
externalTenantSetupProcessor to catch and process it correctly. In cases where the
external database column has a different name, cast the column name as tenantId, as in
the following example:

SELECT organizationId AS tenantId from org_table

Mapping to a Single Organization
If you have multiple organizations in your deployment, you can use the
externalTenantSetupProcessor bean to specify a single organization assigned to all external
users. To do this, set externalTenantSetupProcessor’s defaultOrganization property to the
organization ID of the selected organization. If an organization with that ID already exists,
all external users are assigned to that organization. If the organization does not exist, it's
created when the first external user authenticates correctly.

When specifying the defaultOrganization value, the organization ID must not contain the
following characters: |, &, *, ?, <, >, /, \, ~, !, #, $, %, ^, [, or].

JasperReports® Server Authentication Cookbook

91 | CAS Authentication

The following example shows how to configure externalTenantSetupProcessor to assign all
users to organization_1:

<bean id="externalTenantSetupProcessor" class="com.jaspersoft.jasperserver.multipleTenancy.
 security.externalAuth.processors.MTExternalTenantSetupProcessor"
 parent="abstractExternalProcessor">
 <property name="multiTenancyService">
 <ref bean="internalMultiTenancyService"/>
 </property>
 <property name="defaultOrganization" value="organization_1"/>
</bean>

Do not specify a null value for the defaultOrganization property. The null organization ID is usually
reserved for special users like the system administrator and allows access to the repository folder
of all other organizations.

Organizations created during external user login have an administrator with the default
password. For security reasons, you should change the default password of any
organization admin. See Initialization of JasperReports Server for External Users for a
process to initialize JasperReports Server, including organization administrators, before
going into production with external authentication.

Adding a Custom Processor
To create custom code to run on the server after the user has been authenticated, you can
create a custom processor and add it to the processors list for the externalUserProcessors
property of the externalDataSynchronizer bean. For example, you can add a processor that
calls code to automatically create a user home folder for the authenticated user. See
Creating a Custom Processor.

Customizing the JasperReports Server Interface
for CAS
When a user who's logged into JasperReports Server through CAS clicks the Log Out link,
they'll see the JasperReports Server login page, instead of the CAS login page.

This is due to the way the Spring framework integrates with CAS. Because all login requests
are redirected to CAS, JasperReports Server doesn't know the logged-in or logged-out state
of the user. Instead, JasperReports Server treats all requests as if they're already logged in.

JasperReports® Server Authentication Cookbook

92 | CAS Authentication

If the CAS check doesn't go through, JasperReports Server redirects back to the CAS login
page. But if the user clicks Log Out, this redirection doesn't happen.

To avoid confusion, you can remove or hide the Log Out link using the techniques in
“Customizing the User Interface” in the JasperReports Server Ultimate Guide.

Restarting JasperReports Server
When you've configured all the beans in the appropriate files, restart JasperReports Server.
Because of the modification to the application server configuration in Configuring Java to
Trust the CAS Certificate, you must restart the application server, which also restarts
JasperReports Server.

Instead of navigating to the JasperReports Server login page, go directly to another page in
JasperReports Server, for example your home page:

http://host1:8080/jasperserver/flow.html?_flowId=homeFlow

If JasperReports Server, CAS, and your certificates are configured correctly, you'll be
prompted to log into the CAS server; when you do, you'll be redirected to the
JasperReports Server home page for the logged-in user.

JasperReports® Server Authentication Cookbook

93 | External Database Authentication

External Database Authentication
This chapter shows how to configure JasperReports Server to perform external
authentication and authorization using tables in an external database. To help you with
this, the JasperReports Server deployment includes a sample file, sample-
applicationContext-externalAuth-db-mt.xml, that serves as a template for external database
authentication. Customizing this template should satisfy the requirements of most external
database authentication cases.

This chapter assumes you have some familiarity with Spring Security filter chains.
Examples in this chapter assume you are running JasperReports Server on an application
server, such as Apache Tomcat, and an external SQL database.

This chapter contains the following sections:

• Overview of External Database Authentication

• Configuring JasperReports Server for External Database Authentication

• Beans to Configure

• Configuring User Authentication and Authorization via Database Queries

• Setting the Password Encryption

• Mapping User Roles

• Setting the User Organization

• Setting the Database Connection Parameters

• Configuring the Login Page for a Single-Organization Deployment

• Restarting JasperReports Server

Overview of External Database Authentication
This section describes how JasperReports Server integrates Spring Security to authenticate
users against an external database.

JasperReports® Server Authentication Cookbook

94 | External Database Authentication

The following figure shows the general steps for external database authentication:

Figure 6: General Steps of External Database Authentication

The interaction between the user’s browser, JasperReports Server, and the external
database includes these steps:

1. An unauthenticated user requests any page in JasperReports Server.

2. JasperReports Server detects that the user is not logged in and replies with the
JasperReports Server login page.

3. The user enters their credentials.

4. The JasperReports Server establishes a connection to the database server to verify
the user's credentials.

5. If the user submitted a valid username and password, the database server
authenticates the user to JasperReports Server.

6. JasperReports Server requests user details from the database server using a database
query specified in the configuration file.

JasperReports® Server Authentication Cookbook

95 | External Database Authentication

7. The database server returns the requested details.
JasperReports Server maps the username to a predefined set of roles and an
organization ID. The username, roles, and organization are also synchronized with
the internal database, where the user account is marked as an external user.
(Community editions don't need to synchronize the organization.) For more
information, see Synchronization of External Users.

8. JasperReports Server now sends the requested content to the user. Content that is
sent to the user is subject to authorization. For example, the home page has different
options for administrators than for regular users.

The only difference between these steps and those in Default Internal Authentication, is
that instead of searching for the user in the jasperserver internal database, JasperReports
Server makes a JDBC call to the external database and then synchronizes the user details.

Configuring JasperReports Server for External
Database Authentication
To use an external database with your JasperReports Server, configure the database
connection parameters in default_master.properties before installing JasperReports Server.
You can set up encryption for the password for your database at that time. See the
JasperReports Server Security Guide for more information.

A sample file for configuring JasperReports Server for external database authentication is
included in the JasperReports Server distribution. To configure JasperReports Server to
work with your external database, modify and deploy the sample configuration file as
follows:

1. Make a copy of the external database sample file:
<js-install>/samples/externalAuth-sample-config/sample-applicationContext-
externalAuth-db-mt.xml and name it applicationContext-externalAuth-db-mt.xml.

2. Edit the file you created and configure the beans correctly for your deployment, as
described in the following sections.

3. Place the modified applicationContext-externalAuth-db-mt.xml file in the <js-
webapp>/WEB-INF directory.

<js-webapp> is the location of the JasperReports Server web application in your application server,
or where you're modifying the configuration files. The rest of this chapter refers to file names alone.

JasperReports® Server Authentication Cookbook

96 | External Database Authentication

Beans to Configure
The sample-applicationContext-externalAuth-db-mt.xml file contains the beans needed to
enable and perform authentication to an external database. This section summarizes the
most important beans in this file, including the beans you need to configure to make the
samples work with your deployment.

l proxyAuthenticationProcessingFilter: Filter bean that enables external authentication
of web application requests. When proxyAuthenticationProcessingFilter is present in
the application context, that is, when it appears in an applicationContext-
<customName>.xml file in the <js-webapp>/WEB-INF directory, the Spring Security
filter chain processes the authentication via the proxy definitions instead of the
default internal filter found in applicationContext-security-web.xml. You don't need to
configure this bean.

l dbAuthenticationManager: Lists the available authentication providers. The providers
in the list are invoked in the order they appear in the configuration file until one of
them authenticates the user. When one of the providers successfully authenticates
the user, the rest of the providers are skipped. The final provider in the list,
${bean.daoAuthenticationProvider} authenticates to the jasperserver internal
database. You can customize authentication by adding more providers to this bean.

o externalDaoAuthenticationProvider: Custom authentication provider for
external database authentication.

l externalUserTenantDetailsService: Configure this bean to define the query necessary
to retrieve user, role, and organization information from the external database, as
described in Configuring User Authentication and Authorization via Database Queries.

l passwordValidator: Bean that specifies a key for encoding user passwords. First,
import the same cryptographic key that is used for passwords in your database. Then
configure this bean with the key's alias and password, as described in Setting the
Password Encryption .

l externalDataSynchronizer: Bean whose class creates a mirror image of the external
user in the internal jasperserver database. The sample includes the following
processors:

o externalTenantSetupProcessor: Bean that sets up external organizations in the
jasperserver database. For multi-organization JasperReports Server
deployments, configure this bean to specify the mapping between fields and
field values retrieved from the database and JasperReports Server

JasperReports® Server Authentication Cookbook

97 | External Database Authentication

organizations, as described in Setting the User Organization.

o mtExternalUserSetupProcessor: Bean that creates and configures the internal
user corresponding to a successfully authenticated external user. Configure this
bean to specify the default internal role given to the external users in
JasperReports Server and to map external user roles to internal JasperReports
Server roles if needed, as described in Mapping User Roles. Optionally, you can
assign administrative roles to specific users.

o externalUserFolderProcessor: Bean that creates a user folder as an example of
additional post-authentication processing. Post-authentication processing is
described in Authentication Based on Request.

l externalDataSource: Configure this bean with the JDBC connection information to the
external database to which users are authenticated, as described in Setting the
Database Connection Parameters.

l externalAuthProperties: This bean stores properties necessary to configure
JasperReports Server for external authentication. For multi-organization deployments
of JasperReports Server, configure this bean to require an organization ID on the
login form, as described in Configuring the Login Page for a Single-Organization
Deployment

Setting the Database Connection Parameters
You can configure your connection to the database in one of two ways:

l Configure the connection during installation of JasperReports Server by configuring
the external.jdbcDriverClass, external.jdbcUrl, external.dbUsername, and/or
external.dbPassword properties before installation or upgrade. You can choose to
encrypt any of the database connection parameters. This is the preferred method for
setting the database connection parameters. See the JasperReports Server Security
Guide for more information.

l If you have a JasperReports Server, you can configure the connection properties
directly in your sample-applicationContext-externalAuth-db-mt.xml file. In this case,
the properties, including the password, can't be encrypted.

JasperReports® Server Authentication Cookbook

98 | External Database Authentication

Setting Database Connection Parameters in
default_master.properties
The preferred method for setting the database connection parameters is to configure the
external.jdbcDriverClass, external.jdbcUrl, external.dbUsername and dbPassword properties
in the default_master.properties file before installation or upgrade. In JasperReports Server
5.6 and later, the default configuration of the externalDataSource bean in sample-
applicationContext-externalAuth-db-mt.xml uses context properties for the database
connection properties:

<bean id="externalDataSource" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.jdbc.JSDriverManagerDataSource">

<property name="driverClassName" value="${external.jdbc.driverClassName}"/>
<property name="url" value="${external.jdbc.url}"/>
<property name="username" value="${external.jdbc.username}"/>
<property name="password" value="${external.jdbc.password}"/>

</bean>

To configure these properties using default_master.properties, follow these steps:

1. Open default_master.properties in a text editor.

2. Locate and set the following properties for your LDAP server:

l external.jdbcDriverClass property: The name of the JDBC driver class for your
database. Make sure the driver jar library is available on the classpath; for example,
you can place the jar in the lib directory of your application server or in the <js-
webapp>/lib directory.

l external.jdbcUrl property: The JDBC URL for your database server, including the
hostname, port, and database you want to access.

l external.dbUsername property: The username of your database administrator.

l external.dbPassword property: The password of your database administrator.

3. You can choose to encrypt any of the LDAP connection parameters.

The following example shows the syntax of the properties in the default_master.properties
file:

external.jdbcDriverClass=com.mysql.jdbc.Driver
external.jdbcUrl=jdbc:mysql://127.0.0.1:3306/external_sso_test
external.dbUsername=username
external.dbPassword=password

JasperReports® Server Authentication Cookbook

99 | External Database Authentication

To encrypt the password property, also set the following:

encrypt=true
propsToEncrypt=dbPassword,external.dbPassword

See the JasperReports Server Security Guide for more information on encrypting
passwords using buildomatic.

Setting Database Connection Parameters Manually
If you configured your database connection during JasperReports Server installation, don't set the
parameters using externalDataSource. You can verify whether the parameters are set by looking
at the default_master.properties file.

To set the connection parameters for the external database server directly in the
application context file, configure the externalDataSource helper bean as follows:

1. In sample-applicationContext-externalAuth-db-mt.xml, locate the externalDataSource
bean.

2. Specify the following information:

l driverClassName property: The name of the JDBC driver class for your database.
Make sure the driver jar library is available on the classpath. For example, you can
place the jar in the lib directory of your application server or in the <js-webapp>/lib
directory.

l url property: The JDBC URL for your database server, including the hostname, port,
and database you want to access.

l username property: The username of your database administrator.

l password property: The password of your database administrator.

The following is an example of the connection information for a MySQL database:

<bean id="externalDataSource" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.jdbc.JSDriverManagerDataSource">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://127.0.0.1:3306/external_sso_test"/>
<property name="username" value="username"/>
<property name="password" value="password"/>

</bean>

JasperReports® Server Authentication Cookbook

100 | External Database Authentication

Configuring User Authentication and
Authorization via Database Queries
To authenticate a user, JasperReports Server first queries the external database to retrieve
the user by username and organization. After authentication, a second query is executed to
retrieve user roles. These queries are configured in the externalUserTenantDetailsService
bean. The results are used to map users, roles, and organizations.

The externalUserTenantDetailsService bean configures this bean to define the queries
needed to retrieve user, organization, and roles from the external database. This bean has
the following properties:

l dataSource property: References the externalDataSource bean, which configures the
JDBC connection to the database. The externalDataSource bean is defined later in
the file.

l usersByUsernameAndTenantNameQuery: Property that takes as input a single
username parameter and returns a username, encrypted password, and an
organization ID. Configure this property with a database query that retrieves the
information that authenticates the user, that is, username, encrypted password, and
organization.

l authoritiesByUsernameQuery: Property that takes as input a single username
parameter and returns one or more records of username, rolename tuples. Configure
this property with a database query that retrieves the user and roles from the
external database.

The following example shows how to set up the externalUserTenantDetailsService bean
queries:

<bean id="externalUserTenantDetailsService" class="com.jaspersoft.jasperserver.
multipleTenancy.security.externalAuth.db.MTExternalJDBCUserDetailsService">

<property name="dataSource" ref="externalDataSource"/>
<property name="usersByUsernameAndTenantNameQuery" value="SELECT u.username,

u.password, t.tenantId FROM jiuser u, jitenant t WHERE u.tenantId = t.id and
username = ?"/>

<property name="authoritiesByUsernameQuery" value="SELECT u.username, r.rolename
FROM jiuser u, jiuserrole ur, jirole r WHERE u.id = ur.userId and ur.roleId=r.id and
u.username = ?"/>

<property name="multiTenancyConfiguration"><ref bean="multiTenancyConfiguration"/></property>
</bean>

Note that the semantics, order, and number of the columns in each tuple is fixed. Changing
the order or number of the columns requires customization, which is beyond the scope of
this manual.

JasperReports® Server Authentication Cookbook

101 | External Database Authentication

Setting the Password Encryption
JasperReports Server receives the credentials from the user in the login request as
plaintext. If your database stores encrypted user passwords, you must share the encryption
key with JasperReports Server. The server can then encrypt the password from the user
request and compare it to the password from the external database.

As of JasperReports Server 7.5, the server uses a central keystore (.jrsks file) to securely
hold all the encryption keys it needs. The Java Cryptography Architecture (JCA) defines the
ciphers and the protocols for the keys and the keystore. The encryption used in your
external database must be compatible with the JCA and stored in a compatible key. Then
you can import that key so it is shared by JasperReports Server. For example, if you have
your database's password encryption key in a keystore file, run the following commands as
the system user who installed the server:

cd <js-install>/buildomatic
js-import.sh --input-key --keystore <path>/mykeystore --storepass password

--keyalias mydbkey --keypass mydbkeypw

The key will be copied to the server's keystore and keep the same properties, including
alias and password. You can also import keys as hexadecimal values if necessary. The
following command creates a new key with the given algorithm, alias, and password:

js-import.sh --input-key "0x59 0xe3 0xd9 0xce 0x7f 0x34 0xab 0x27 0xb8 0xdf 0xc3 0x7e
0x01 0xab 0x4d 0x6c" --keyalg AES --keyalias mydbkey --keypass mydbkeypw

In the case where your external database is new and not yet provisioned with users, it will
need a key to encrypt passwords. In that case, JasperReports Server can generate the key,
store it in the keystore, and you can export it to use in your database. The following
commands create a new random key in the keystore and export the same key for use
externally:

js-import.sh --input-key --genkey --keyalg AES --keysize 128 --keyalias mydbkey
--keypass mydbkeypw

js-export.sh --destkeystore mystore --deststorepass storepw --keyalias mydbkey
--keypass mydbkeypw

For more information about the keystore and exporting keys, see the JasperReports Server
Security Guide.

Once the key is in the server's keystore, configure the passwordValidator bean in the
applicationContext-externalAuth-db-mt.xml file. Set the bean's property values to match

JasperReports® Server Authentication Cookbook

102 | External Database Authentication

those of the key you have imported. The following example shows how to configure the
bean with the keys imported above:

<bean id="passwordValidator" class="com.jaspersoft.jasperserver.api.common.crypto.CipherFactory"
lazy-init="false">

<property name="cipherClass"
value="com.jaspersoft.jasperserver.api.metadata.common.service.impl.PasswordValidator"/>

<property name="transformation" value="AES/CBC/PKCS5Padding"/>
<property name="blockSize" value="16"/>
<property name="keyAlgorithm" value="AES"/>
<property name="keySize" value="128"/>
<property name="keyAliasProp" value="mydbkey.keyalias"/>
<property name="keyPassProp" value="mydbkey.keypass"/>

</bean>

By default, the JasperReports Server keystore supports AES and DES keys. If your database uses
a different encryption algorithm, you can configure your own password encoder using the Spring
implementations of the PasswordEncoder interface. This is an advanced configuration that is
beyond the scope of this guide.

Mapping User Roles
The roles an external user has in JasperReports Server are imported from the external data
source and stored in the internal JasperReports Server database. External roles can be
reflected as new external roles in JasperReports Server or they can be mapped to internal
roles.

Retrieving Roles from the External Database
To configure the retrieval and mapping for user roles in sample-applicationContext-
externalAuth-db-mt.xml file, first make sure you've set up the
externalUserTenantDetailsService bean as described in Configuring User Authentication and
Authorization via Database Queries. Then configure externalUserSetupProcessor to map the
external information to roles in the JasperReports Server as follows:

l defaultInternalRoles property: A list of internal roles assigned to the external user by
default.

l organizationRoleMap property: A list of key/value pairs that maps external role
names to internal ones. For commercial JasperReports Server deployments, you need
to choose the level at which the role is assigned:

JasperReports® Server Authentication Cookbook

103 | External Database Authentication

o To map to an internal role at the organization level, append |* to the name of
the internal role, for example, ROLE_EXTERNAL_USER|*. Roles mapped at the
organization level don't have administrative privileges.

o To map to an internal role at the system (null) level, don't modify the internal
role name, for example, ROLE_EXTERNAL_ADMINISTRATOR. Roles at the system
level are usually reserved for special users like the system administrator and
allow access to the repository folder of all other organizations.

The following example shows how to configure the organizationRoleMap property:

<property name="organizationRoleMap">
<map>
<!-- Example of mapping customer roles to JRS roles -->
<entry>

<key>
<value>ROLE_ADMIN_EXTERNAL_ORGANIZATION</value>

</key>
<!-- JRS role that the <key> external role is mapped to-->
<value>ROLE_ADMINISTRATOR|*</value>

</entry>
</map>

</property>

Defining Static Roles
If you're mapping all your external users to a single organization, you can assign static
roles to users. This lets you specify a list of administrative users and roles, and a list of
roles for non-administrative users. To define static roles, use the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. To set up static roles,
locate the version of the bean used in your sample file and configure the following
properties:

l adminUserNames property: A list of usernames granted internal administrator
privileges in JasperReports Server. The username values must exactly match the
usernames authenticated and returned by the external authority.

l defaultAdminRoles property: A list of JasperReports Server internal roles. These are
assigned to every user in the list of administrators.

l defaultInternalRoles property: A list of JasperReports Server roles assigned to every
user not in the list of administrators.

JasperReports® Server Authentication Cookbook

104 | External Database Authentication

The following example shows how to use the mtExternalUserSetupProcessor bean to define
static roles. The configuration for externalUserSetupProcessor is similar:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">

...
 <property name="adminUsernames">
 <list>
 <value>myorgadmin</value>
 </list>
 </property><property name="defaultAdminRoles">
 <list>
 <value>ROLE_USER</value>
 <value>ROLE_ADMINISTRATOR</value>
 </list>
 </property>
 <property name="defaultInternalRoles">

 <list>
 <value>ROLE_USER</value>
 </list>
 </property>
...

Setting Default Roles
You can assign roles to all users using the defaultInternalRoles property of
externalUserSetupProcessor or mtExternalUserSetupProcessor. The following example
shows how to use this property in externalUserSetupProcessor to assign ROLE_USER to all
users, in addition to the roles assigned by mapping:

<property name="defaultInternalRoles">
<list>

<value>ROLE_USER</value>
</list>

</property>

JasperReports® Server Authentication Cookbook

105 | External Database Authentication

Avoiding Role Collisions
If an external role has the same name as an internal role at the same organization level,
JasperReports Server adds a suffix such as _EXT to the external role name to avoid
collisions. For example, a user with the externally defined role ROLE_ADMINISTRATOR is
assigned the role ROLE_ADMINISTRATOR_EXT in the JasperReports Server database. This
ensures that internal administrator accounts like jasperadmin and superuser can still log in
as internal administrators with the associated permissions.

You can set the extension in the conflictingExternalInternalRoleNameSuffix property in the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. If the property doesn't
appear in the bean, the extension is still implemented but defaults to _EXT. The following
example shows how to configure this property:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">
<property name="conflictingExternalInternalRoleNameSuffix"

value="_EXTERNAL"/>
 <property name="organizationRoleMap">

 ...
<!-- Example of mapping customer roles to JRS roles -->

 ...
 </property>

Restricting the Mapping to Whitelisted Roles
You may not want every role in your external authority to appear as a role in JasperReports
Server. Use the permittedRolesRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean to specify which external roles become roles in
JasperReports Server. You can use regular expressions to specify multiple roles that match
the expression.

For example, to restrict the roles you create in JasperReports Server to roles that begin
with JRS_ or EXT_ in your external authority, you would configure permittedRolesRegex in
a way similar to the following:

<property name="permittedRolesRegex">
<list>

<value>JRS_.*</value>
<value>EXT_.*</value>

</list>
</property>

JasperReports® Server Authentication Cookbook

106 | External Database Authentication

To allow all roles, use .* or comment out the property. If the property is omitted, all roles
in the external authority are synchronized with roles in JasperReports Server.

Supporting Additional Characters in Role Names
The default mapping from attributes in your external authentication server to roles in
JasperReports Server supports only alphanumeric characters and underscores. If a role in
your external authority contains unsupported characters, each sequence of unsupported
characters is replaced with a single underscore. For example, ROLE$-DEMO)EXT maps to
ROLE_DEMO_EXT.

You can extend the supported character set by modifying the
permittedExternalRoleNameRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean. Check the sample configuration file for your
deployment to determine which bean to modify.

The default value of the permittedExternalRoleNameRegex property is the regular
expression [A-Za-z0-9_]+. Edit this expression to add supported characters. For example,
the following syntax allows alphanumeric characters, underscores, and the Cyrillic letter Я
(Unicode 042F):

<bean id="mtExternalUserSetupProcessor" class="com.jaspersoft.jasperserver.api.security.
externalAuth.processors.MTExternalUserSetupProcessor"

parent="abstractExternalProcessor">
<property name="userAuthorityService">
<ref bean="${bean.internalUserAuthorityService}"/>

</property>
.....
<property name="permittedExternalRoleNameRegex"

value="[A-Za-z0-9_\u042F]+">
</bean>

Do not allow the following in role names: spaces, periods or |, [], `, ", ', ~, !, #, $, %, ^, &, [,], *, +, =, ;,
:, ?, <, >, }, {,), (,], [, /, or \. Adding these characters in the permittedExternalRoleNameRegex
property may cause unexpected behavior, such as the inability to delete or edit roles containing
those characters.

Setting the User Organization
Organizations are a feature of JasperReports Server commercial editions. Skip this section if you
have JasperReports Server community edition.

JasperReports® Server Authentication Cookbook

107 | External Database Authentication

In the sample-applicationContext-externalAuth-db-mt.xml file, the tenantId is returned
within the field usersByUsernameAndTenantNameQuery in
externalUserTenantDetailsService. This query provides the required information to the
tenant processor, so no additional configuration is needed.

Organizations created during external user login have an administrator with a default
password. The admin username and password are configurable. See Setting Up Default
Admins for Organizations. For security reasons, you should change the default password of
any organization admin. See Initialization of JasperReports Server for External Users for a
process to initialize the server, including organization admins, before going into production
with external authentication.

Setting Up Default Admins for Organizations
In a multi-organization deployment, JasperReports Server creates a jasperadmin user
whenever you create a new organization. The jasperadmin user is also given a standard
default password. When creating multiple organizations using external authentication, you
can set a different default password for jasperadmin, remove the jasperadmin user, and/or
create additional default users in each new organization created by external
authentication. Optionally, you can encrypt the password in the configuration files. See the
JasperReports Server Security Guide for more information on default users in every
organization.

For security reasons, you should change the default password of any organization admin. See
Initialization of JasperReports Server for External Users for a process to initialize the server,
including organization admins, before going into production with external authentication.

To set up admin users

1. Open your sample-applicationContext-xxx-externalAuth.xml file in a text editor.

2. Locate the externalTenantSetupUsers property in the externalTenantSetupProcessor
bean.

3. The sample contains a bean of class ExternalTenantSetupUser already configured for
jasperadmin.

JasperReports® Server Authentication Cookbook

108 | External Database Authentication

<property name="externalTenantSetupUsers">
<list>
<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTAbstractExternalProcessor.ExternalTenantSetupUser">
<property name="username" value="${new.tenant.user.name.1}"/>
<property name="fullName" value="${new.tenant.user.fullname.1}"/>
<property name="password" value="${new.tenant.user.password.1}"/>
<property name="emailAddress" value="${new.tenant.user.email.1}"/>
<property name="roleSet">
<set>
<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>
</list>

</property>

4. To create additional admin users for each external organization, create a bean of class
ExternalTenantSetupUser for each admin user you want.

<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTAbstractExternalProcessor.ExternalTenantSetupU
ser">

<property name="username" value="${new.tenant.user.name.2}"/>
<property name="fullName" value="${new.tenant.user.fullname.2}"/>
<property name="password" value="${new.tenant.user.password.2}"/>
<property name="emailAddress" value="${new.tenant.user.email.2}"/>

<property name="roleSet">
<set>

<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>

5. The ${...} syntax above references values configured in the following file:

<js-install>\buildomatic\conf_source\iePro\js.config.properties file.

To set these values, open <js-install>\buildomatic\conf_
source\iePro\js.config.properties and edit the entries there.

new.tenant.user.name.1=jasperadmin
new.tenant.user.fullname.1=jasperadmin
new.tenant.user.password.1=mynewpassword
new.tenant.user.email.1=
new.tenant.user.name.2=anotheradmin

JasperReports® Server Authentication Cookbook

109 | External Database Authentication

new.tenant.user.fullname.2=Another Admin
new.tenant.user.password.2=anotherpassword
new.tenant.user.email.2=

The property names, for example, new.tenant.user.name.1, are arbitrary. You can use any name
for each property as long as the name in the applicationContext-externalAuth-xxx.xml file matches
the name in the js.config.properties file.

6. If you want to obfuscate the default passwords in the js.config.properties files, encrypt
them as described in the JasperReports Server Security Guide. Obfuscation must be
implemented before you install the server.

7. If you don't want to obfuscate default passwords, you can eliminate the reference to
js.config.properties and instead configure the values directly in the
externalTenantSetupUsers property in the applicationContext-externalAuth-xxx.xml file. For
example:

<property name="username" value="anotheradmin"/>
<property name="fullName" value="Another Admin"/>
<property name="password" value="anotherpassword"/>
<property name="emailAddress" value=""/>

Mapping Organization Names
You have the option to use the organizationMap property in the
externalTenantSetupProcessor bean to map organization names extracted from your
external authority to organization names in JasperReports Server. To do this, create a
key/value pair for each organization you want to map, specifying the external organization
name as the key and the organization name in JasperReports Server as the value. When
mapping organizations, the server determines the mapped name and uses it as the name,
ID, and description of the organization.

For example, the following would map users in External_Org_1 in the external authority to
JRS_Org_1 in JasperReports Server and users in External_Org_2 in the external authority to
JRS_Org_2 in JasperReports Server:

<property name="organizationMap">
<map>

<entry key="External_Org_1" value="JRS_Org_1" />

JasperReports® Server Authentication Cookbook

110 | External Database Authentication

<entry key="External_Org_2" value="JRS_Org_2" />
</map>

</property>

The organizationMap property is optional. Any organization in your external authority that
is not listed in organizationMap is mapped to an organization of the same name in
JasperReports Server. However, if an organization in your external authority contains
unsupported characters, each sequence of unsupported characters is replaced with a single
underscore. For example, Human Resources maps to Human_Resources.

The tenantIdNotSupportedSymbols property of the configurationBean bean in the
applicationContext.xml file lists the unsupported characters, including spaces and the
following characters: |, &, *, ?, <, >, /, \, ~, !, #, $, %, ^, [,], or a space. If you want to list
additional characters that should be replaced with an underscore, you can add them in this
bean. However, we do not recommend removing any of the pre-defined characters, as
JasperReports Server may not handle them correctly.

Specifying a Single Organization
If you have multiple organizations in your deployment, you can use the
externalTenantSetupProcessor bean to specify a single organization assigned to all external
users. To do this, set externalTenantSetupProcessor’s defaultOrganization property to the
organization ID of the selected organization. If an organization with that ID already exists,
all external users are assigned to that organization. If the organization does not exist, it's
created when the first external user authenticates correctly.

When specifying the defaultOrganization value, the organization ID must not contain the
following characters: |, &, *, ?, <, >, /, \, ~, !, #, $, %, ^, [, or].

The following example shows how to configure externalTenantSetupProcessor to assign all
users to organization_1:

<bean id="externalTenantSetupProcessor" class="com.jaspersoft.jasperserver.multipleTenancy.
 security.externalAuth.processors.MTExternalTenantSetupProcessor"
 parent="abstractExternalProcessor">
 <property name="multiTenancyService">
 <ref bean="internalMultiTenancyService"/>
 </property>
 <property name="defaultOrganization" value="organization_1"/>
</bean>

JasperReports® Server Authentication Cookbook

111 | External Database Authentication

Do not specify a null value for the defaultOrganization property. The null organization ID is usually
reserved for special users like the system administrator and allows access to the repository folder
of all other organizations.

Organizations created during external user login have an administrator with the default
password. For security reasons, you should change the default password of any
organization admin. See Initialization of JasperReports Server for External Users for a
process to initialize JasperReports Server, including organization administrators, before
going into production with external authentication.

Adding a Custom Processor
To create custom code to run on the server after the user has been authenticated, you can
create a custom processor and add it to the processors list for the externalUserProcessors
property of the externalDataSynchronizer bean. For example, you can add a processor that
calls code to automatically create a user home folder for the authenticated user. See
Creating a Custom Processor.

Configuring the Login Page for a Single-
Organization Deployment
Even for a single-organization deployment, the user needs to enter an external organization
name on the login page. To make the organization field available on the login form, you
need to set the alwaysRequestOrgIdOnLoginForm property in the externalAuthProperties
bean to true.

Deployments with multiple organizations in the database always display a line for the
organization ID on the login page.

Restarting JasperReports Server
When you've configured all the beans in the appropriate files, restart JasperReports Server
to make the changes take effect.

JasperReports® Server Authentication Cookbook

112 | External Database Authentication

To test your configuration, navigate to the JasperReports Server login page. If the server
and your external database are configured correctly, you can log into JasperReports Server
with credentials stored in your external database. Try several users with different roles or
organizations to verify your configuration.

JasperReports® Server Authentication Cookbook

113 | Token-based Authentication

Token-based Authentication
If you have an application or portal you want to use with JasperReports Server, but no
single sign-on environment, you can use the Jaspersoft token-based authentication and
user management framework. To work with token-based authentication, your application
or portal must do the following:

l Authenticate the end user according to the standards of your environment or
application.

l Construct and, optionally, encrypt a token based on the authenticated user values
within your application or process. The token values can include username,
organization (if multi-tenancy is enabled), roles, and profile attributes. You can
configure the token based on your needs for reporting and analysis within the
JasperReports Server.

l Send the token to the JasperReports Server as part of an HTTP request.

When JasperReports Server receives the token, it will:

l Attempt to decrypt the token (if encrypted) and validate the token format.

l If the token is successfully parsed, use the information in the token to create and
update the external user within JasperReports Server automatically.

The JasperReports Server deployment includes a sample file for token-based
authentication in the <js-install>/samples/externalAuth-sample-config folder: the sample-
applicationContext-externalAuth-preauth-mt.xml file (commercial editions) or sample-
applicationContext-externalAuth-preauth.xml (community editions).

When using token-based authentication, it's extremely important that your external system is
configured properly to prevent an attacker from forging the token. Consider taking security
measures like connecting over HTTPS, encrypting the token, and using a time stamp, so the
token is not exposed in the browser cache and cannot be easily reused.

Overview of Token-based Authentication
This section explains how JasperReports Server performs external authentication using a
token, highlighting the differences with Default Internal Authentication.

JasperReports® Server Authentication Cookbook

114 | Token-based Authentication

The following diagram shows the general steps involved in logging into JasperReports
Server using a token:

Figure 7: General Steps for Token-based Authentication

The following steps explain the interaction between the user’s browser, JasperReports
Server, and a pre-authenticated user:

1. A user requests any page in JasperReports Server.

2. If the user has not previously accessed JasperReports Server, the server looks for the
principalParameter in the URL or request header. If the token is present and correctly
formatted, the user is automatically authenticated.

JasperReports® Server Authentication Cookbook

115 | Token-based Authentication

In token-based authentication, the JasperReports Server login screen is not displayed to the
user and the user does not log in directly.

After the user has authenticated and a JasperReports Server session has been created,
future requests do not require the principalParameter.

3. JasperReports Server decrypts the token in the URL or request header and creates a
principal object to represent the user’s session in memory. The username, roles, and
organization information are extracted from the token and synchronized with the internal
database, where the user account is marked as an external user. The JasperReports Server
environment reflects the user’s roles and organization as defined in the token. For more
information about synchronization, see Synchronization of External Users.

4. As with the default internal authorization, JasperReports Server now sends the requested
content to the user, or if none was specified, the home page appropriate for the user. An
application-server user session is established and the connection between the requesting
browser or process is maintained by repeatedly sending session identification information,
usually in the form of an HTTP cookie. The token doesn't need to be resent until the user
logs out or the session is inactive for a period of time.

When comparing these steps with those in Default Internal Authentication, you'll notice
three significant differences:

l Token-based authentication doesn't use a login screen. Instead, it depends on the
principalParameter in the URL or request header. As long as the principalParameter is
present, the request is automatically authenticated.

l The portal or other external authentication mechanism is responsible for passing the
correct username, and any roles, organization, or profile attributes as part of a token
in the URL or request header.

l JasperReports Server decrypts the token, extracts the user details, and uploads the
data to the internal database. The internal database is synchronized with any new
information in the user’s principal object.

Configuring JasperReports Server for Token-
based Authentication
A sample file for configuring JasperReports Server to work with token-based authentication
is included in the JasperReports Server distribution. Sample files are located in the

JasperReports® Server Authentication Cookbook

116 | Token-based Authentication

<js-install>/samples/externalAuth-sample-config directory of your JasperReports Server.
The file included depends on your version of JasperReports Server:

l sample-applicationContext-externalAuth-preauth.xml: Sample file for implementing
token-based authentication for a single organization. This file is included in the
community edition of JasperReports Server.

l sample-applicationContext-externalAuth-preauth-mt.xml: Sample file for
implementing token-based authentication for multiple organizations. This file is
included in commercial editions of JasperReports Server. To use external
authentication with a commercial version and a single organization, you need to
specify your organization as described in Specifying a Single Organization.

To configure JasperReports Server to work with your authentication method, modify and
deploy the sample configuration file:

1. Make a copy of the preauth sample file in the <js-install>/samples/externalAuth-
sample-config/ directory and rename it to remove the sample- prefix. For example,
rename sample-applicationContext-externalAuth-preauth.xml to applicationContext-
externalAuth-preauth.xml.

2. Edit the file you created and configure the beans correctly for your deployment, as
described in the following sections.

3. Place the modified file in the <js-webapp>/WEB-INF directory.

<js-webapp> is the location of the JasperReports Server web application in your application server,
or where you're modifying the configuration files. The rest of this chapter refers to file names alone.

Overview of Token-based Authentication Beans
The sample-applicationContext-externalAuth-preauth[-mt].xml file contains the beans
needed to enable token-based authentication. This section summarizes the most important
beans in this file, including the beans you need to modify to configure JasperReports
Server to work with token-based authentication.

l proxyPreAuthenticatedProcessingFilter: Bean that enables token-based
authentication. This bean extracts and optionally decrypts the token from the
request. When this proxy bean definition is present in the application context, the
Spring Security filter chain processes the authentication via the proxy definitions
instead of the default internal filter. See Configuring the Token for more information.

JasperReports® Server Authentication Cookbook

117 | Token-based Authentication

l preAuthenticatedManager: Lists the available authentication providers. In token-
based authentication, there's a single provider, the
JSPreAuthenticatedAuthenticationProvider. This bean doesn't have to be configured.

l JSPreAuthenticatedAuthenticationProvider: Custom authentication provider for
token-based authentication. This bean has a constructor argument,
preAuthenticatedUserDetailsService, which it uses to create the user details from the
values passed in the token. See Configuring the Token.

l externalDataSynchronizer: Bean whose class creates a mirror image of the external
user in the internal jasperserver database.

l mtExternalUserSetupProcessor or externalUserSetupProcessor: Bean that creates and
configures the internal user corresponding to a successfully authenticated external
user. Configure this bean to specify the roles given to external users. See User Roles.

l externalTenantSetupProcessor: For multi-tenant deployments, this bean creates and
configures the internal organization for a successfully authenticated external user.
See Mapping the User Organization.

l externalProfileAttributeProcessor: Optional processor that sets up user profile
attributes. You don't need to configure this processor; the mapping is set up in the
token configuration. Comment this bean out if not used.

Configuring the Token
To use your authentication provider with JasperReports Server's token-based
authentication, you must pass a correctly formatted token in the HTTP header or the URL
of the request. A token is a string of key/value pairs separated by a character specified in
the configuration file.

Security of the Token
JasperReports Server will accept any properly formatted token; therefore, you need to
protect the integrity of the token using measures such as:

• Use SSL to Connect to JasperReports Server to protect against token interception.

• Encrypt the token to protect against tampering. See Setting Token Decryption for
more information.

JasperReports® Server Authentication Cookbook

118 | Token-based Authentication

• Configure the token to use a timestamp to protect against replay attacks. Without a
timestamp, when you include the token in a web page or REST web service URL, the
URL can be copied and used by unauthorized people or systems. Setting the expire
time for the token will prevent tokens/URLs from being used to authenticate beyond
the indicated time. You can set the expiry time depending on your use case. For a
user who is logged into the application/portal and requesting access to
JasperReports Server, expiry time of a minute or less from the request time is
appropriate. See the descriptions for expireTime and tokenExpireTimestampFormat
in preAuthenticatedUserDetailsService.

proxyPreAuthenticatedProcessingFilter bean
Some token configuration is specified in the proxyPreAuthenticatedProcessingFilter bean
using the following properties:

l principalParameter: A fixed string at the start of the token that triggers token-based
authentication. The first time the user accesses JasperReports Server, the
principalParameter must be present in the request. principalParameter can be any
URL-safe string that's different from all other JasperReports Server request
parameter names.

l tokenInRequestParam: Boolean that specifies the location of principalParameter as
follows:

o true: JasperReports Server looks for principalParameter in the request URL
only.

o false: JasperReports Server looks for principalParameter in the request header
only.

o absent: JasperReports Server checks the request header first and then the URL.

l tokenDecryptor: Specifies the class to use to decrypt the token. For security reasons,
you should encrypt the token to keep its payload from being intercepted when it's
exposed in the browser's cache or when SSL is not enabled. If the token is encrypted,
you must provide an implementation of Jaspersoft's token decryptor interface
CipherI. The default assumes the token is unencrypted and passes the token through
as plaintext.

JasperReports® Server Authentication Cookbook

119 | Token-based Authentication

Setting Token Decryption
If you want to encrypt the token, you need to select the encryption you'll use to encrypt
the token in the calling application and decrypt the token in the JasperReports Server. To
implement the token decryption algorithm in JasperReports Server, you must write Java
code that implements Jaspersoft's CipherIinterface and include it in the Spring
configuration for security. CipherI is located in the
com.jaspersoft.jasperserver.api.common.crypto package in the jasperserver-api.common.
[version].jar jar file.

CipherI is a stub interface that allows you to define two methods:

• encrypt: Takes a text string and returns a text string encrypted according to the
specified algorithm.

• decrypt: Takes a text string and returns a text string decrypted according to the
specified algorithm.

You can implement any encryption method you choose.

package com.mycompany;

public class MyCipher implements CipherI {
@Override
public String encrypt(String plainText) {

...
return cipherText;

}

@Override
public String decrypt(String cipherText) {

...
return plainText;

}
}

JasperReports® Server Authentication Cookbook

120 | Token-based Authentication

Once you've created your implementation of CipherI, you need to incorporate it in a jar file
and reference it in the tokenDecryptor property of proxyPreAuthenticatedProcessingFilter:

<bean id="proxyPreAuthenticatedProcessingFilter"
class="com.jaspersoft.jasperserver.api.security.

externalAuth.preauth.BasePreAuthenticatedProcessingFilter">
...

<property name="tokenDecryptor">
<bean class="com.mycompany.MyCipher"/>

</property>
...

</bean>

preAuthenticatedUserDetailsService
Specify the token format using the preAuthenticatedUserDetailsService constructor
argument in the preAuthenticatedManager bean. An inline bean in
preAuthenticatedUserDetailsService lets you specify the token properties. The following
example shows one way you might configure this bean:

<bean class="com.jaspersoft.jasperserver.api.security.externalAuth.wrappers.spring.preauth.
JSPreAuthenticatedAuthenticationProvider">

<property name="preAuthenticatedUserDetailsService">
<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.externalAuth.preauth.

MTJSPreAuthenticatedUserDetailsService">
<property name="tokenPairSeparator" value="|"/>
<property name="tokenFormatMapping">
<map>
<entry key="username" value="u" />
<entry key="roles" value="r" />
<entry key="orgId" value="o" />
<entry key="expireTime" value="exp" />
<entry key="profile.attribs" >
<map>
<entry key="profileAttrib1" value="pa1" />
<entry key="profileAttrib2" value="pa2" />

</map>
</entry>

</map>
</property>

<property name="tokenExpireTimestampFormat" value="yyyyMMddHHmmssZ"/>
</bean>

</property>
</bean>

Sample Code Configuration

The inline bean has the following properties:

l tokenPairSeparator: A single character used as the separator for key-value pairs in

JasperReports® Server Authentication Cookbook

121 | Token-based Authentication

the token, for example, pipe (|, encoded in URLs as %7C) (default). Cannot include
comma (,), question mark (?), or equals sign (=), as these are used elsewhere in the
token.

If you're passing the token in the URL, you need to encode all equal signs (=, encoded as %3D)
and pipe symbols (|, encoded as %7C) in the token to make the token URL-safe.

l tokenFormatMapping: The mapping between parameters in the token and attributes
of the principal object in JasperReports Server, like roles and profile attributes.
Entries in the mapping have the format <entry key ="JRS" value="keyintoken">, for
example, <entry key="username" value="u" />. The key, such as username, is a fixed
value used in the JasperReports Server code. The value is a parameter in the token
mapped to the key in JasperReports Server.

l tokenFormatMapping supports the following JasperReports Server fixed values:

o username: The external user's username.

o roles: The external user's roles.

o orgId: (optional, multi-tenant implementations only) In a multi-organization
deployment, the external user's organization. In a single-tenant deployment, or
in a deployment that maps all users to the same organization using
defaultOrganization, you can comment out this property.

o expireTime: The key for the token expiration time. A time formatted as
configured in the tokenExpireTimestampFormat property.

o profile.attribs: (optional) This lets you specify a map of key-value pairs for
profile attributes. Comment this out if you don't want to map profile attributes.
You must also comment out the reference to externalProfileAttributeProcessor
in the externalUserProcessors property of the externalDataSynchronizer.

The user password does not appear as a standard parameter in the token
format. Passwords don’t need to be passed in the token in most cases,
because JasperReports Server doesn't store passwords for externally-
defined users. If you want to store passwords, you can pass them in using
profile attributes.

tokenFormatMapping also supports the following property:

o tokenExpireTimestampFormat: The format of the token expiration time,
expireTime, based on the java.text.SimpleDateFormat. Valid patterns for
timestamps can contain only letters, numbers, dashes, underscores, and
periods. The default pattern is yyyyMMddHHmmssZ, for example
20140415060121Z.

JasperReports® Server Authentication Cookbook

122 | Token-based Authentication

Z represents the UTC timezone. It denotes a UTC offset of 00:00.

For more information about the valid patterns for this field, refer to:
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html.

The token has to match the configuration you specify in
preAuthenticatedUserDetailsService. With the configuration shown in Sample Code
Configuration, you would use the following token syntax in the page header:

pp=u=user|r=role1,role2,...|o=org1
[,org2,...]|pa1=PA11,PA12,...|pa2=PA21,PA22,...|exp=time

In this example, pp (principalParameter) is the name of the header attribute or the URL
token parameter name.

If you're passing the token in the URL, you need to encode all equal signs (=, encoded as %3D)
and pipe symbols (|, encoded as %7C) in the token to make the token URL-safe.

The key-value pairs can appear in the token in any order, but must be delineated by the
separator specified in the tokenPairSeparator property:

• u: Takes a single value that maps to the username in JasperReports Server.

• r: Takes as values a comma separated list of roles, each mapped to a separate role
in JasperReports Server. If you have defined default internal roles, this parameter is
optional. See User Roles.

• o: Takes as values a comma separated list that maps to an organization in the
JasperReports Server. If more than one organization is listed, it's interpreted as an
organization hierarchy. For example, o=A,B maps the user to the B suborganization
of A.

• exp: Takes a single time value formatted as configured in the
tokenExpireTimestampFormat property. If exp is earlier than current time,
authentication is denied. if exp is absent, the token never expires.

• pa1: Profile attribute that maps to profileAttrib1 in the JasperReports Server
repository.

• pa2: Profile attribute that maps to profileAttrib2 in the JasperReports Server
repository.

With this configuration, the following would be a valid token. The user would be placed in
the Sales suborganization of the EMEA organization:

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

JasperReports® Server Authentication Cookbook

123 | Token-based Authentication

pp=u=Sven|r=Manager|o=EMEA,Sales|pa1=Sweden

If you're passing the token in the URL, you need to encode all equal signs (=) (as %3D) and
pipe symbols (|) (as %7C) in the token to make the token URL-safe:

http://localhost:8080/jasperserver?pp=u%3DSven%7Cr%3DManager%7Co%3DEMEA,Sales%7Cpa1%3DSweden

User Roles
User roles are mapped using the externalUserSetupProcessor or
mtExternalUserSetupProcessor bean. See the configuration file for your deployment to see
which bean applies in your case. For token-based authentication, you can define user roles
in the following ways:

• Map the user roles received from the token: Define a mapping between roles in the
external authority and roles in JasperReports Server. See Mapping User Roles.

• Define user roles statically: If you don't have user roles in the token, you can define
static roles for administrative and non-administrative users. See Defining Static
Roles.

Mapping User Roles
If you have user roles in the token, you can map them to roles in JasperReports Server
using the organizationRoleMap property of the externalUserSetupProcessor or
mtExternalUserSetupProcessor bean.

The organizationRoleMap property contains key/value pairs that map external role names
to internal ones. For commercial JasperReports Server deployments, you need to choose
the level at which the role is assigned:

• To map to an internal role at the organization level, append |* to the name of the
internal role, for example, ROLE_USER|*. Roles mapped at the organization level
don't have administrative privileges.

• To map to an internal role at the system (null) level, don't modify the internal role
name, for example, ROLE_ADMINISTRATOR. Roles at the system level are usually

JasperReports® Server Authentication Cookbook

124 | Token-based Authentication

reserved for special users like the system administrator and allow access to the
repository folder of all other organizations.

The following example shows how you might configure the externalUserSetupProcessor
bean to map roles from the external authority to roles in JasperReports Server:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor" parent="abstractExternalProcessor">
<property name="organizationRoleMap">

<map>
<!-- Example of mapping customer roles to JRS roles -->
<entry key= ROLE_ADMIN_EXTERNAL_ORGANIZATION value=ROLE_ADMINISTRATOR />

</map>
</property>

Setting Default Roles
You can assign roles to all users using the defaultInternalRoles property of
externalUserSetupProcessor or mtExternalUserSetupProcessor. The following example
shows how to use this property in externalUserSetupProcessor to assign ROLE_USER to all
users, in addition to the roles assigned by mapping:

<property name="defaultInternalRoles">
<list>

<value>ROLE_USER</value>
</list>

</property>

Avoiding Role Collisions
If an external role has the same name as an internal role at the same organization level,
JasperReports Server adds a suffix such as _EXT to the external role name to avoid
collisions. For example, a user with the externally defined role ROLE_ADMINISTRATOR is
assigned the role ROLE_ADMINISTRATOR_EXT in the JasperReports Server database. This
ensures that internal administrator accounts like jasperadmin and superuser can still log in
as internal administrators with the associated permissions.

JasperReports® Server Authentication Cookbook

125 | Token-based Authentication

You can set the extension in the conflictingExternalInternalRoleNameSuffix property in the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. If the property doesn't
appear in the bean, the extension is still implemented but defaults to _EXT. The following
example shows how to configure this property:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">
<property name="conflictingExternalInternalRoleNameSuffix"

value="_EXTERNAL"/>
 <property name="organizationRoleMap">

 ...
<!-- Example of mapping customer roles to JRS roles -->

 ...
 </property>

Restricting the Mapping to Whitelisted Roles
You may not want every role in your external authority to appear as a role in JasperReports
Server. Use the permittedRolesRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean to specify which external roles become roles in
JasperReports Server. You can use regular expressions to specify multiple roles that match
the expression.

For example, to restrict the roles you create in JasperReports Server to roles that begin
with JRS_ or EXT_ in your external authority, you would configure permittedRolesRegex in
a way similar to the following:

<property name="permittedRolesRegex">
<list>

<value>JRS_.*</value>
<value>EXT_.*</value>

</list>
</property>

To allow all roles, use .* or comment out the property. If the property is omitted, all roles
in the external authority are synchronized with roles in JasperReports Server.

Supporting Additional Characters in Role Names
The default mapping from attributes in your external authentication server to roles in
JasperReports Server supports only alphanumeric characters and underscores. If a role in
your external authority contains unsupported characters, each sequence of unsupported

JasperReports® Server Authentication Cookbook

126 | Token-based Authentication

characters is replaced with a single underscore. For example, ROLE$-DEMO)EXT maps to
ROLE_DEMO_EXT.

You can extend the supported character set by modifying the
permittedExternalRoleNameRegex property of the externalUserSetupProcessor bean or
mtExternalUserSetupProcessor bean. Check the sample configuration file for your
deployment to determine which bean to modify.

The default value of the permittedExternalRoleNameRegex property is the regular
expression [A-Za-z0-9_]+. Edit this expression to add supported characters. For example,
the following syntax allows alphanumeric characters, underscores, and the Cyrillic letter Я
(Unicode 042F):

<bean id="mtExternalUserSetupProcessor" class="com.jaspersoft.jasperserver.api.security.
externalAuth.processors.MTExternalUserSetupProcessor"

parent="abstractExternalProcessor">
<property name="userAuthorityService">
<ref bean="${bean.internalUserAuthorityService}"/>

</property>
.....
<property name="permittedExternalRoleNameRegex"

value="[A-Za-z0-9_\u042F]+">
</bean>

Do not allow the following in role names: spaces, periods or |, [], `, ", ', ~, !, #, $, %, ^, &, [,], *, +, =, ;,
:, ?, <, >, }, {,), (,], [, /, or \. Adding these characters in the permittedExternalRoleNameRegex
property may cause unexpected behavior, such as the inability to delete or edit roles containing
those characters.

Defining Static Roles
If you're mapping all your external users to a single organization, you can assign static
roles to users. This lets you specify a list of administrative users and roles, and a list of
roles for non-administrative users. To define static roles, use the
externalUserSetupProcessor or mtExternalUserSetupProcessor bean. To set up static roles,
locate the version of the bean used in your sample file and configure the following
properties:

l adminUserNames property: A list of usernames granted internal administrator
privileges in JasperReports Server. The username values must exactly match the
usernames authenticated and returned by the external authority.

l defaultAdminRoles property: A list of JasperReports Server internal roles. These are
assigned to every user in the list of administrators.

JasperReports® Server Authentication Cookbook

127 | Token-based Authentication

l defaultInternalRoles property: A list of JasperReports Server roles assigned to every
user not in the list of administrators.

The following example shows how to use the mtExternalUserSetupProcessor bean to define
static roles. The configuration for externalUserSetupProcessor is similar:

<bean id="mtExternalUserSetupProcessor"
class="com.jaspersoft.jasperserver.multipleTenancy.security.
 externalAuth.processors.MTExternalUserSetupProcessor"
 parent="abstractExternalProcessor">

...
 <property name="adminUsernames">
 <list>
 <value>myorgadmin</value>
 </list>
 </property><property name="defaultAdminRoles">
 <list>
 <value>ROLE_USER</value>
 <value>ROLE_ADMINISTRATOR</value>
 </list>
 </property>
 <property name="defaultInternalRoles">

 <list>
 <value>ROLE_USER</value>
 </list>
 </property>
...

Mapping the User Organization
There are two ways to set the user organization:

• If you have multiple organizations in your deployment, set up the token to contain
organization information as above. If you want organization names in JasperReports
Server to be different from the ones in the external authority, use the
organizationMap property, as described in Mapping Organization Names.

• If your JasperReports Server has multiple organizations, but you want all users to be
in the same organization, use the externalTenantSetupProcessor bean to specify the
organization, as described in Specifying a Single Organization; in this case you don't
need to include organization information in the token.

JasperReports® Server Authentication Cookbook

128 | Token-based Authentication

If your JasperReports Server deployment supports only a single organization (all
community deployments and some professional editions), you don't need to set
organization information.

Setting Up Default Admins for Organizations
In a multi-organization deployment, JasperReports Server creates a jasperadmin user
whenever you create a new organization. The jasperadmin user is also given a standard
default password. When creating multiple organizations using external authentication, you
can set a different default password for jasperadmin, remove the jasperadmin user, and/or
create additional default users in each new organization created by external
authentication. Optionally, you can encrypt the password in the configuration files. See the
JasperReports Server Security Guide for more information on default users in every
organization.

For security reasons, you should change the default password of any organization admin. See
Initialization of JasperReports Server for External Users for a process to initialize the server,
including organization admins, before going into production with external authentication.

To set up admin users

1. Open your sample-applicationContext-xxx-externalAuth.xml file in a text editor.

2. Locate the externalTenantSetupUsers property in the externalTenantSetupProcessor
bean.

3. The sample contains a bean of class ExternalTenantSetupUser already configured for
jasperadmin.

<property name="externalTenantSetupUsers">
<list>
<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTAbstractExternalProcessor.ExternalTenantSetupUser">
<property name="username" value="${new.tenant.user.name.1}"/>
<property name="fullName" value="${new.tenant.user.fullname.1}"/>
<property name="password" value="${new.tenant.user.password.1}"/>
<property name="emailAddress" value="${new.tenant.user.email.1}"/>
<property name="roleSet">
<set>
<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>
</list>

</property>

JasperReports® Server Authentication Cookbook

129 | Token-based Authentication

4. To create additional admin users for each external organization, create a bean of class
ExternalTenantSetupUser for each admin user you want.

<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.

externalAuth.processors.MTAbstractExternalProcessor.ExternalTenantSetupU
ser">

<property name="username" value="${new.tenant.user.name.2}"/>
<property name="fullName" value="${new.tenant.user.fullname.2}"/>
<property name="password" value="${new.tenant.user.password.2}"/>
<property name="emailAddress" value="${new.tenant.user.email.2}"/>

<property name="roleSet">
<set>

<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>

5. The ${...} syntax above references values configured in the following file:

<js-install>\buildomatic\conf_source\iePro\js.config.properties file.

To set these values, open <js-install>\buildomatic\conf_
source\iePro\js.config.properties and edit the entries there.

new.tenant.user.name.1=jasperadmin
new.tenant.user.fullname.1=jasperadmin
new.tenant.user.password.1=mynewpassword
new.tenant.user.email.1=
new.tenant.user.name.2=anotheradmin
new.tenant.user.fullname.2=Another Admin
new.tenant.user.password.2=anotherpassword
new.tenant.user.email.2=

The property names, for example, new.tenant.user.name.1, are arbitrary. You can use any name
for each property as long as the name in the applicationContext-externalAuth-xxx.xml file matches
the name in the js.config.properties file.

6. If you want to obfuscate the default passwords in the js.config.properties files, encrypt
them as described in the JasperReports Server Security Guide. Obfuscation must be
implemented before you install the server.

7. If you don't want to obfuscate default passwords, you can eliminate the reference to
js.config.properties and instead configure the values directly in the

JasperReports® Server Authentication Cookbook

130 | Token-based Authentication

externalTenantSetupUsers property in the applicationContext-externalAuth-xxx.xml file. For
example:

<property name="username" value="anotheradmin"/>
<property name="fullName" value="Another Admin"/>
<property name="password" value="anotherpassword"/>
<property name="emailAddress" value=""/>

Mapping Organization Names
You have the option to use the organizationMap property in the
externalTenantSetupProcessor bean to map organization names extracted from your
external authority to organization names in JasperReports Server. To do this, create a
key/value pair for each organization you want to map, specifying the external organization
name as the key and the organization name in JasperReports Server as the value. When
mapping organizations, the server determines the mapped name and uses it as the name,
ID, and description of the organization.

For example, the following would map users in External_Org_1 in the external authority to
JRS_Org_1 in JasperReports Server and users in External_Org_2 in the external authority to
JRS_Org_2 in JasperReports Server:

<property name="organizationMap">
<map>

<entry key="External_Org_1" value="JRS_Org_1" />
<entry key="External_Org_2" value="JRS_Org_2" />

</map>
</property>

The organizationMap property is optional. Any organization in your external authority that
is not listed in organizationMap is mapped to an organization of the same name in
JasperReports Server. However, if an organization in your external authority contains
unsupported characters, each sequence of unsupported characters is replaced with a single
underscore. For example, Human Resources maps to Human_Resources.

The tenantIdNotSupportedSymbols property of the configurationBean bean in the
applicationContext.xml file lists the unsupported characters, including spaces and the
following characters: |, &, *, ?, <, >, /, \, ~, !, #, $, %, ^, [,], or a space. If you want to list
additional characters that should be replaced with an underscore, you can add them in this
bean. However, we do not recommend removing any of the pre-defined characters, as
JasperReports Server may not handle them correctly.

JasperReports® Server Authentication Cookbook

131 | Token-based Authentication

Specifying a Single Organization
In a multi-tenant deployment, if you don't have organization information in your token,
your users are mapped to the NULL organization, which means they will be given root
privilege. If your deployment has only one organization, this organization is used by
default.

If you have multiple organizations in your deployment, you can use the
externalTenantSetupProcessor bean to specify a single organization assigned to all external
users. To do this, set externalTenantSetupProcessor’s defaultOrganization property to the
organization ID of the selected organization. If an organization with that ID already exists,
all external users are assigned to that organization. If the organization does not exist, it's
created when the first external user authenticates correctly.

When specifying the defaultOrganization value, the organization ID must not contain the
following characters: |, &, *, ?, <, >, /, \, ~, !, #, $, %, ^, [, or].

The following example shows how to configure externalTenantSetupProcessor to assign all
users to organization_1:

<bean id="externalTenantSetupProcessor" class="com.jaspersoft.jasperserver.multipleTenancy.
 security.externalAuth.processors.MTExternalTenantSetupProcessor"
 parent="abstractExternalProcessor">
 <property name="multiTenancyService">
 <ref bean="internalMultiTenancyService"/>
 </property>
 <property name="defaultOrganization" value="organization_1"/>
</bean>

Do not specify a null value for the defaultOrganization property. The null organization ID is usually
reserved for special users like the system administrator and allows access to the repository folder
of all other organizations.

Organizations created during external user login have an administrator with the default
password. For security reasons, you should change the default password of any
organization admin. See Initialization of JasperReports Server for External Users for a
process to initialize JasperReports Server, including organization administrators, before
going into production with external authentication.

JasperReports® Server Authentication Cookbook

132 | Token-based Authentication

Adding a Custom Processor
To create custom code to run on the server after the user has been authenticated, you can
create a custom processor and add it to the processors list for the externalUserProcessors
property of the externalDataSynchronizer bean. For example, you can add a processor that
calls code to automatically create a user home folder for the authenticated user. See
Creating a Custom Processor.

Restarting JasperReports Server
When you've configured all the beans in the appropriate files, restart JasperReports Server
to make the changes take effect.

To test your configuration, log into your external authority and request a page from
JasperReports Server. If the token and server are configured correctly, you can access
JasperReports Server. Try several users with different roles or organizations to verify your
configuration.

JasperReports® Server Authentication Cookbook

133 | OAuth Authentication

OAuth Authentication
OAuth (Open Authorization) is an industry-standard protocol that enables secure access
delegation. This allows applications to access resources or perform actions on behalf of
users without exposing their credentials. OAuth simplifies the process of granting
controlled access to resources, enhancing the user experience while maintaining security.

One of the most valuable applications of OAuth is user authentication. Beyond its role in
resource access, OAuth serves as a robust and flexible mechanism for verifying and
authorizing users. For JasperReports Server to apply this authentication mechanism
effectively, it is required that the OAuth provider supports OpenID Connect (OIDC). OIDC
extends the authentication process by enabling the retrieval of user details and claims. This
enables JasperReports Server integration with third-party services and applications.

OAuth Authentication Flow in JasperReports
Server
This section explains how JasperReports Server performs authentication using OAuth.

JasperReports® Server Authentication Cookbook

134 | OAuth Authentication

The following diagram shows the general steps involved in logging into JasperReports
Server using OAuth:

Figure 8: General Steps for OAuth Authentication

The following steps explain the interaction between the user’s browser, JasperReports
Server, and an OAuth provider:

1. A user requests any page in JasperReports Server.

2. JasperReports Server redirects the user to a special, configurable OAuth endpoint that
can verify the user session.

3. The OAuth provider checks if that user's browser has an existing active session in the
OAuth server and:

JasperReports® Server Authentication Cookbook

135 | OAuth Authentication

l If no active session, then a login form on the OAuth Provider side is shown, the user
provides credentials, then OAuth redirects the user's browser to JasperReports Server
with an authorization code.

l If there is already an active session, then the user's browser is redirected to
JasperReports Server with an authorization code.

4. JasperReports Server sends an authorization code to OAuth and requests access token
and id token.

5. When a JWT token (JSON Web Token) is received from the OAuth provider,
JasperReports Server validates and decodes it.

6. If the token is valid, then JasperReports Server synchronizes user details in the
JasperReports Server repository database.

7. After synchronization is done, the user is authenticated in JasperReports Server and is
authorized based on defined roles.

Configuring OAuth
The following sections describe how to configure JasperReports Server to use an OAuth
provider.

How to Enable OAuth in JasperReports Server
To enable OAuth in JasperReports Server, edit the web.xml file.

In the section:

<context-param>

<param-name>spring.profiles.active</param-name>

<param-value>default,engine,jrs</param-value>

</context-param>

Add ,oauth after JRS.

For example:

<param-value>default,engine,jrs,oauth</param-value>

JasperReports® Server Authentication Cookbook

136 | OAuth Authentication

Configuring JasperReports Server to use OAuth
Authentication
On the deployed JasperReports Server, locate the following file:

jasperserver-pro/WEB-INF/classes/oauth-clientconfig.properties file, and configure the
properties according to your use case.

OAuth Configuration Properties
The following table describes OAuth Client-related properties found in the oauth-
clientconfig.properties file.

Property Name Property Description

spring.security.oauth2.client.registration.oidc.registration-id The registration-id property is a
unique identifier used in the
configuration of OAuth 2.0
client registration within a
Spring Security framework.

spring.security.oauth2.client.registration.oidc.client-id The client-id property is a
required configuration
parameter for OAuth2 client
registration when integrating
with an OpenID Connect (OIDC)
provider. It represents the
unique client identifier assigned
by the OIDC provider during the
application registration process.

spring.security.oauth2.client.registration.oidc.client-secret The client-secret property is a
required configuration
parameter for OAuth2 client
registration when integrating
with an OpenID Connect (OIDC)
provider. It represents a

JasperReports® Server Authentication Cookbook

137 | OAuth Authentication

Property Name Property Description

confidential, client-specific, and
secret credential assigned by
the OIDC provider during the
application registration process.

spring.security.oauth2.client.registration.oidc.client_
authenticationMethod

The client_
authenticationMethod property
is used to specify the method
by which JasperReports Server
authenticates itself to the
OpenID Connect (OIDC) provider
during the client registration
process.

spring.security.oauth2.client.registration.oidc.redirect-uri The redirect-uri property
specifies the URI to which the
OIDC provider will redirect the
user's browser after the user
successfully authorizes your
application. JasperReports
Server already has this endpoint
available - oauth, but you must
provide the full URL which
user's browser can access. For
example:
https://my.company/jasperserve
r-pro/oauth

spring.security.oauth2.client.registration.oidc.scope The scope property is used to
define the access scope for the
OIDC client registration within
JasperReports Server
application. It specifies the level
of access that JasperReports
Server is requesting when
interacting with the OIDC
provider.

JasperReports® Server Authentication Cookbook

138 | OAuth Authentication

Property Name Property Description

spring.security.oauth2.client.registration.oidc.filterProcesse
sUrl

The filterProcessesUrl property
defines the URL path to which
the OIDC provider's
authentication and
authorization response will be
directed for processing by
JasperReports Server.

spring.security.oauth2.client.registration.oidc.authorization-
uri

The authorization-uri property
specifies the URI where the
OIDC provider's authorization
server is located. This URI is
used during the OAuth2
authorization code flow to
initiate the user authentication
and authorization process.

spring.security.oauth2.client.provider.oidc.token-uri The token-uri property specifies
the URI where the OIDC
provider's token endpoint is
located. This URI is required for
JasperReports Server to obtain
tokens during the OAuth2 flow.

spring.security.oauth2.client.provider.oidc.jwk-uri The jwk-uri property specifies
the URI where the OIDC
provider's JSON Web Key (JWK)
Set is located. The JWK Set
contains the public keys that
JasperReports Server
application can use to verify the
authenticity of tokens issued by
the OIDC provider.

spring.security.oauth2.client.provider.oidc.issuer-uri The issuer-uri property specifies
the URI of the OIDC provider's
issuer. The issuer URI serves as

JasperReports® Server Authentication Cookbook

139 | OAuth Authentication

Property Name Property Description

a unique identifier for the
provider and is required for
verifying the authenticity and
trustworthiness of OIDC tokens.

The following table describes OAuth JasperReports Server-related properties found in the
oauth-clientconfig.properties file.

Property Name Property Description

spring.security.oauth2.jrs.entrypoint The entrypoint property is
the URL that is a starting
point that initiates an
authorization request, and
endpoint should end with
registration-id.

spring.security.oauth2.jrs.logouturl The logouturl property is the
URL that JasperReports
Server will direct a user to
when a logout action is
triggered. Typically, this URL
should be a designated
logout endpoint on the
OpenID Connect (OIDC) side.
It can also include a redirect
URL, where the user will be
sent after a successful
logout out from the OAuth
server.

spring.security.oauth2.user.attributes.mapping.name The mapping.name property
is the JWT attribute that
holds information about
user which will be used in
JasperReports Server as the
user id.

JasperReports® Server Authentication Cookbook

140 | OAuth Authentication

Property Name Property Description

spring.security.oauth2.user.attributes.mapping.display-name The mapping.display-name
property is the JWT attribute
that holds information about
user which will be used in
JasperReports Server as user
name (display name).

spring.security.oauth2.user.attributes.mapping.email The mapping.email property
is the JWT attribute that
holds information about
user which will be used in
JasperReports Server as the
user's email.

spring.security.oauth2.user.attributes.mapping.organization-id The mapping.organization-id
property is the JWT attribute
that holds information about
user which will be used in
JasperReports Server as
user's organization id.

spring.security.oauth2.user.attributes.mapping.org-delimiter The mapping.org-delimiter
property is the delimiter
character that is used to
separate organization ids
when hierarchy or
organizations is provided.

spring.security.oauth2.external.tenant.defaultOrganization The defaultOrganization
property is the default
organization where the user
will be placed.

spring.security.oauth2.user.attributes.mapping.roles The mapping.roles property
is the JWT attribute that
holds information about
user which will be used in

JasperReports® Server Authentication Cookbook

141 | OAuth Authentication

Property Name Property Description

JasperReports Server as the
user's role.

spring.security.oauth2.external.user.organizationRoleMap The organizationRoleMap
property is the mapping of
external (OIDC) roles to
internal roles in
JasperReports Server.

spring.security.oauth2.profile.attributes.prefix The attributes.prefix
property is the prefix for any
JWT attributes that can be
used as user profile
attributes in JasperReports
Server.

Sample Integration with OAuth2 Provider
The following is an example of how to connect JasperReports Server to an OAuth2 provider
(Okta).

Edit jasperserver-pro/WEB-INF/classes/oauth-clientconfig.properties and set required
properties as follows:

spring.security.oauth2.client.registration.oidc.registration-
id=oidc

spring.security.oauth2.client.registration.oidc.client-
id=<application-client-id>

spring.security.oauth2.client.registration.oidc.client-
secret=<application-secret>

spring.security.oauth2.client.registration.oidc.client_
authenticationMethod=client_secret_post

spring.security.oauth2.client.registration.oidc.redirect-
uri=https://my.company/jasperserver-pro/oauth

JasperReports® Server Authentication Cookbook

142 | OAuth Authentication

spring.security.oauth2.client.registration.oidc.scope=openid,pro
file,phone,email

spring.security.oauth2.client.registration.oidc.authorization-
uri=https://dev.okta.com/oauth2/default/v1/authorize

spring.security.oauth2.client.registration.oidc.filterProcessesU
rl=/oauth

spring.security.oauth2.client.provider.oidc.token-
uri=https://dev.okta.com/oauth2/default/v1/token

spring.security.oauth2.client.provider.oidc.jwk-
uri=https://dev.okta.com/oauth2/default/v1/keys

spring.security.oauth2.client.provider.oidc.issuer-
uri=https://dev.okta.com/oauth2/default

spring.security.oauth2.jrs.entrypoint=https://my.company/jaspers
erver-pro/oauth2/authorization/oidc

spring.security.oauth2.jrs.logouturl=https://dev.okta.com/oauth2
/default/v1/logout?id_token_hint=##ID_TOKEN##&post_logout_
redirect_uri=https%3A%2F%2Fmy.company.com%3A8080%2Fjasperserver-
pro%2F

spring.security.oauth2.user.attributes.mapping.name=preferred_
username

spring.security.oauth2.user.attributes.mapping.display-name=name

spring.security.oauth2.user.attributes.mapping.email=email

spring.security.oauth2.user.attributes.mapping.organization-
id=organization

spring.security.oauth2.user.attributes.mapping.org-delimiter=|

spring.security.oauth2.user.attributes.mapping.roles=roles_opt

spring.security.oauth2.profile.attributes.prefix=custom_pa_

spring.security.oauth2.external.tenant.defaultOrganization=organ
ization_1

spring.security.oauth2.external.user.organizationRoleMap={\

\"jrs_admin\": \"ROLE_ADMINISTRATOR\",\

JasperReports® Server Authentication Cookbook

143 | OAuth Authentication

\"jrs_user\": \"ROLE_USER\",\

\"ext_role\": \"ROLE_SUBORG2|*\"\

}

spring.security.oauth2.external.user.adminUserNames=testExternal
Admin

spring.security.oauth2.external.user.defaultAdminRoles=ROLE_
USER,ROLE_ADMINISTRATOR

spring.security.oauth2.external.user.defaultInternalRoles=ROLE_
USER

Mapping External OAuth Roles to Internal
JasperReports Server Roles
As mentioned in the previous section, the property
spring.security.oauth2.user.attributes.mapping.roles can be used to define a JWT attribute
that holds user roles or groups for roles, but it can also be used for groups.

For example:

spring.security.oauth2.user.attributes.mapping.roles=groups4roles

On the OAuth provider, it is possible to define an attribute for groups, and then assign role
attributes to the group.

Use the variable spring.security.oauth2.external.user.organizationRoleMap= to define which
internal role should be assigned for the corresponding role in JWT.

For example:

spring.security.oauth2.external.user.organizationRoleMap={\"EXT_JRS_ADMINS\":
\"ROLE_ADMINISTRATOR\",\"EXT_JRS_USERS\": \"ROLE_USER\",\"EXT_ROLE\": \"ROLE_
SUBORG_USER|*\"}

In this case:

l if JWT contains EXT_JRS_ADMINS value in groups4roles attribute, then such a user
will get ROLE_ADMINISTRATOR root level role assigned.

JasperReports® Server Authentication Cookbook

144 | OAuth Authentication

l if JWT contains EXT_ROLE value in groups4roles attribute, then such a user will get
ROLE_SUBORG_USER tenant level role assigned, because "|*" is passed after the role
name, which indicates that tenant role will be assigned.

Note that if such a role doesn't exist in JasperReports Server, then it will be created and
assigned during user synchronization.

Also, note that when providing a json object for organizationRoleMap, then the quotes
should be escaped with "\", and also it's possible to write in multi-line with adding
additional "\" to escape line breaker, for example:

spring.security.oauth2.external.user.organizationRoleMap={\

\"EXT_JRS_ADMINS\": \"ROLE_ADMINISTRATOR\",\

\"EXT_JRS_USERS\": \"ROLE_USER\",\

\"EXT_ROLE\": \"ROLE_SUBORG_USER|*\"\

}

You can also assign default roles for external users by setting:

spring.security.oauth2.external.user.defaultInternalRoles=ROLE_
USER,ROLE_EXTERNAL_USERS

It is recommended to keep at least ROLE_USER, so external users can work normally with
the JasperReports Server UI.

Placing a User into an Organizational Hierarchy
OAuth configuration supports placing external users into organization, but with
maintaining organization hierarchy. For example, a hierarchy could be:

parent_company -> business_unit -> department

Let's assume in the JWT attribute responsible for this is called "org_hierarchy", and the
value of that attribute is, for example "main-org | unit1 | department1".

If you need to recreate such a hierarchy with a user getting saved in the department
organization, you can use the following configuration:

spring.security.oauth2.user.attributes.mapping.organization-id=org_hierarchy

spring.security.oauth2.user.attributes.mapping.org-delimiter=|

JasperReports® Server Authentication Cookbook

145 | OAuth Authentication

Mapping User Profile Attributes
You can assign profile attributes to a user during the process of synchronization with
repository db, if JWT contains attributes with names that match prefix configured in the
property spring.security.oauth2.profile.attributes.prefix.

For example, configure it as:

spring.security.oauth2.profile.attributes.prefix=custom_pa_

Then if JWT contains attributes that start with custom_pa_, then a profile attribute with
the same name and value will be created for this user.

Defining Administrators
External users can be promoted to administrators if the user id matches the predefined
property spring.security.oauth2.external.user.adminUserNames.

For example, by setting:

spring.security.oauth2.external.user.adminUserNames=externalAdmi
n,externalSuperuser

spring.security.oauth2.external.user.defaultAdminRoles=ROLE_
USER,ROLE_ADMINISTRATOR

If an external user logs in with user id externalAdmin, then this user will get ROLE_
ADMINISTRATOR role assigned, as defined in the defaultAdminRoles property.

JasperReports® Server Authentication Cookbook

146 | Advanced Topics

Advanced Topics
External authentication as presented in this guide is a configuration of the default
JasperReports Server product. To implement other behavior during external
authentication, you must write custom classes and deploy them with the server. This
chapter describes the bean APIs you can use for customization. It also explains specific
customizations such as custom processors.

This chapter contains the following sections:

• Internal Authentication Beans

• External Authentication Framework

• Creating a Custom Processor

• Authentication Based on Request

• Other Customizations

Internal Authentication Beans
JasperReports Server uses Spring Security for authentication. When JasperReports Server
receives a request, from either a person using the web interface or an application using the
web services, the Spring Security filter chain processes that request. The filter chains in
applicationContext-security-web.xml are based on the standard Spring Security filter
chains.

JasperReports® Server Authentication Cookbook

147 | Advanced Topics

The following figure shows the most important authentication-related beans in the filter
chain:

Figure 9: Beans for Internal Authentication in JasperReports Server

1. authenticationProcessingFilter — Responsible for authenticating the user and creating
the principal object in memory. With default authentication, this filter redirects the user to
the login page, then processes the organization ID, username, and password.

2. authenticationManager — Bean of Spring class ProviderManager that manages default
authentication by invoking a list of providers. JasperReports Server relies on
${bean.daoAuthenticationProvider} for internal authentication.

3. ${bean.daoAuthenticationProvider} — Bean for performing authentication to the
jasperserver internal database configured in <js-webapp>/WEB-INF/applicationContext-
security.xml.

The filter chains for authentication are configured for the following patterns:

• The /xmla pattern represents the XML for Analysis (XML/A) servlet. They are
configured with a set of filters designed to receive client SOAP requests. SOAP is
implemented in the sample files for LDAP.

• The /services/** pattern represents the XML for SOAP web services. In this filter
chain, the ${bean.basicProcessingFilter} bean initiates internal authentication. SOAP
is implemented in the sample files for LDAP.

• The /rest/login, /rest/**, and rest_v2/** patterns represent the XML for REST web
services. In this filter chain, the restAuthenticationProcessingFilter and
${bean.basicProcessingFilter} beans initiate internal authentication. REST is
implemented in the sample files for LDAP.

JasperReports® Server Authentication Cookbook

148 | Advanced Topics

• The /** pattern matches anything that wasn’t caught by another pattern. This
pattern is designed for people using web browsers. In this filter chain, the
authenticationProcessingFilter bean initiates.

External Authentication Framework
JasperReports Server uses an external authentication bean framework to make it easier to
configure the security system for external authentication. Although each external
authentication situation is different, we've extracted the common principals and extended
the set of Spring Security beans to help you configure your own external authentication.

Jaspersoft has implemented a proxy bean for each filter chain, for example,
delegatingAuthenticationRestProcessingFilter, that serves as a proxy for the standard
Spring authenticationProcessingFilter and initiates external authentication for the pattern.
These proxy beans inspect the application context for external authentication beans, and
use them if they are present. Otherwise, the default internal authentication beans are used.

The following sample files use JasperReports Server’s external authentication APIs to
integrate with custom SSO servers following a CAS-like protocol:

l sample-applicationContext-externalAuth-sso.xml: Sample file for integrating CAS with
a single-organization JasperReports Server. Included with the community edition of
JasperReports Server only.

l sample-applicationContext-externalAuth-sso-mt.xml: Sample file for integrating CAS
with a multiple-organization JasperReports Server. In this example, user details like
external roles and organization are retrieved from an external database. Included
with the commercial version of JasperReports Server only.

External Authentication Beans
The external authentication framework consists of the following beans:

1. proxyAuthenticationProcessingFilter: Bean to which the filter chain configured in
applicationContext-security-web.xml delegates authentication via
delegatingExceptionTranslationFilter. When a proxyAuthenticationProcessingFilter
bean appears in an applicationContext-<customName>.xml file in the <js-
webapp>/WEB-INF directory, delegatingExceptionTranslationFilter processes the

JasperReports® Server Authentication Cookbook

149 | Advanced Topics

authentication via the proxy definition instead of the default
authenticationProcessingFilter.

2. customAuthenticationProvider: Bean for providing custom authentication. This bean
takes information from the JasperReports Server login request and authenticates the
user; it returns user name, roles, and organizations in a Spring userDetails object.
customAuthenticationProvider is invoked by Spring’s ProviderManager class, as
specified in the providers property.

3. externalDataSynchronizer: Bean whose class creates a mirror image of the external
user in the internal jasperserver database. The user synchronization work is
performed by a list of processors specified in the externalUserProcessors property,
called in the order of their appearance. This bean is invoked by the
proxyAuthenticationProcessingFilter bean's class on successful user authentication.
The externalDataSynchronizer bean has the following property:

l externalUserProcessors property: Lists processors implementing the Processor
interface. These processors run on JasperReports Server after the user has
been authenticated. Mandatory processors to implement are:

o TenantSetupProcessor: If you have multiple organizations in your
deployment, implement a bean of this class to specify the mapping from
organizations in your external data source to organizations in
JasperReports Server.

o ExternalUserSetupProcessor or mtExternalUserSetupProcessor:
Implement a bean of this class to specify how to synchronize external
users and roles with the internal JasperReports Server database.

You can also write custom processors as described in Creating a Custom Processor.

JasperReports® Server Authentication Cookbook

150 | Advanced Topics

Figure 10: Beans for JasperReports Server External Authentication API

Creating a Custom Processor
To create custom code to run on the server after the user has been authenticated, you can
create a custom processor and add it to the processors list for the externalUserProcessors
property of the externalDataSynchronizer bean. To create a custom processor, extend the
AbstractExternalSetupProcessor class or MTAbstractExternalProcessor class, which provide
access to all the JasperReports Server service classes like the repository and user
management. For example, to create a folder, you must use HibernateRepositoryService
and ObjectPermissionService. See the description of Java APIs in the chapter
“JasperReports Server APIs” in the JasperReports Server Ultimate Guide for more
information on the available JasperReports Server services.

The processors for user setup and tenant mapping in the sample configuration files, like
externalUserProcessors or ldapExternalTenantProcessor, are themselves examples of
processor implementation. These processors are described in detail in the sections for each
authentication mechanism, for example, Mapping to Multiple Organizations.

In addition, many of the sample application context files include an
externalUserFolderProcessor bean that calls code to automatically create a user home

JasperReports® Server Authentication Cookbook

151 | Advanced Topics

folder for the authenticated user. The following example shows how to add
externalUserFolderProcessor to the externalUserProcessors property of the
ExternalDataSynchronizer bean:

<bean id="externalDataSynchronizer"

 class="com.jaspersoft.jasperserver.api.security.externalAuth.ExternalDataSync
hronizerImpl">

 <property name="externalUserProcessors">

 <list>

 <ref local="externalUserSetupProcessor"/>

 <ref local="externalUserFolderProcessor"/>

 </list>

 </property>

</bean>

The following code block shows how you might configure an externalUserFolderProcessor
bean in your applicationContext-externalAuth-xxx.xml configuration file:

<bean id="externalUserFolderProcessor"

 class="com.jaspersoft.jasperserver.api.security.externalAuth.processors.

 ExternalUserFolderProcessor"

 parent="abstractExternalProcessor">

 <property name="repositoryService" ref="${bean.unsecureRepositoryService}"/>

</bean>

JasperReports® Server Authentication Cookbook

152 | Advanced Topics

To write a processor, extend AbstractExternalUserProcessor and overwrite the process
method with your java code. This gives you access to the following services:

• RepositoryService
• UserAuthorityService
• TenantService
• ProfileAttributeService
• ObjectPermissionService

If you extend MTAbstractExternalProcessor, you can access the following
multiTenancyService service:

Authentication Based on Request
When your user request has sufficient information for your custom authentication method
to authenticate directly from the request, you can create a custom authentication provider
to automatically authenticate the user and create organizations and roles. This
corresponds to Spring Security’s pre-authenticated scenario. The exact implementation
depends on the external authentication you are using. In some cases, you may need to
obtain user roles and organizations from a separate source.

If you're passing information in the HTTP request, as with Siteminder, it's extremely important that
your external system is configured properly to prevent an attacker from forging the HTTP headers.

The JasperReports Server deployment includes a sample file for custom authentication in
the <js-install>/samples/externalAuth-sample-config folder: the sample-applicationContext-
externalAuth-template-mt.xml file (commercial editions) or sample-applicationContext-
externalAuth-template.xml (community editions). This sample takes the IP address from
the user’s authentication request, creates a user with the same name in JasperReports
Server, and uses the JasperReports Server API to create a user folder in the JasperReports
Server Repository and set permissions.

JasperReports® Server Authentication Cookbook

153 | Advanced Topics

Figure 11: Sequence Diagram for Authentication Based on the Request

To set up authentication based on the request:

1. Modify CustomAuthenticationProcessingFilter.java to work with your authentication
method. This class takes a single HttpServletRequest parameter and returns a Spring
Authentication object. You can use one of Spring's implementations of Authentication or
our CustomAuthenticationToken. Your user request needs to have sufficient information for
your custom authentication method to authenticate using the request.

2. Create a myCustomProvider class implementing AuthenticationProvider. In this class you
must use the authentication object created in the previous step. For more information,
refer to the documentation for Spring Security, as described in Spring Security.

3. In sample-applicationContext-template.xml, add myCustomProvider to the providers list
in customAuthenticationManager. Your provider should authenticate using the object
returned by CustomAuthenticationProcessingFilter.

JasperReports® Server Authentication Cookbook

154 | Advanced Topics

<bean id="customAuthenticationManager" class="com.jaspersoft.jasperserver.api.security.
externalAuth.wrappers.spring.JSProviderManager">

<property name="providers">
<list>
<ref bean="${bean.myCustomProvider}"/>
<ref bean="${bean.daoAuthenticationProvider}"/>

</list>
</property>
</bean>

4. Comment out or remove the sample provider.

/* <bean id="customAuthenticationProvider class="com.jaspersoft.jasperserver.api.security.
externalAuth.custom.CustomAuthenticationProvider"/> */

5. Set up your processors to work with your users and organizations. You can use the
processors for LDAP or CAS as examples.

6. Copy the modified file to the WEB-INF folder and remove the sample- prefix.

Other Customizations
Spring Security and JasperReports Server are complex systems that allow many different
opportunities for customization, for example:

l Modifying the authentication provider to:

o Locate external users in different ways.

o Extract additional user information from the external authority.

o Implement custom mappings of organizations and roles.

l Writing a new authentication provider to implement external authentication for a
new protocol.

l Modifying or replacing filters to perform synchronization differently.

l Writing additional filters to take further action during the login sequence.

As with any design, you must determine the benefits and drawbacks in the areas of
complexity, cost, and maintenance of your implementation to help you decide your
preferred approach.

The best way to customize is to copy one of the sample files and make modifications.
Details on customization are beyond the scope of this guide.

JasperReports® Server Authentication Cookbook

155 | Jaspersoft Documentation and Support Services

Jaspersoft Documentation and Support
Services
For information about this product, you can read the documentation, contact Support, and
join Jaspersoft Community.

How to Access Jaspersoft Documentation

Documentation for Jaspersoft products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the JasperReports® Server Product
Documentation page.

How to Access Related Third-Party Documentation

When working with JasperReports® Server, you may find it useful to read the
documentation of the following third-party products:

How to Contact Support for Jaspersoft Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

https://community.jaspersoft.com/documentation/
https://community.jaspersoft.com/documentation/
https://community.jaspersoft.com/documentation/
https://community.jaspersoft.com/documentation/
https://www.jaspersoft.com/support
https://www.jaspersoft.com/support

JasperReports® Server Authentication Cookbook

156 | Jaspersoft Documentation and Support Services

How to Join Jaspersoft Community

Jaspersoft Community is the official channel for Jaspersoft customers, partners, and
employee subject matter experts to share and access their collective experience. Jaspersoft
Community offers access to Q&A forums, product wikis, and best practices. It also offers
access to extensions, adapters, solution accelerators, and tools that extend and enable
customers to gain full value from Jaspersoft products. In addition, users can submit and
vote on feature requests from within the Jaspersoft Ideas Portal. For a free registration, go
to Jaspersoft Community.

https://jaspersoftideas.tibco.com/
https://community.jaspersoft.com/

JasperReports® Server Authentication Cookbook

157 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

Jaspersoft, JasperReports, Visualize.js, and TIBCO are either registered trademarks or trademarks of
Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

JasperReports® Server Authentication Cookbook

158 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2005-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction
	JasperReports Server Version Supported
	Spring Security
	Terminology

	Authentication in JasperReports Server
	Locating and Working With Sample Files
	Deploying Configuration Files
	WEB-INF Directory Location

	Configuring Logging for Debugging
	Default Internal Authentication
	Organizations and Users in JasperReports Server
	Multiple Organizations in JasperReports Server
	Default Admins in Organizations

	Synchronization of External Users
	Synchronization of Roles
	Initialization of JasperReports Server for External Users
	Maintenance of External Users
	Managing External Users
	Managing External Role Definitions
	Modifying Role Mappings
	Managing External Organizations

	Internal Users

	LDAP Authentication
	Overview of External LDAP Authentication
	Configuring JasperReports Server for LDAP Authentication
	Overview of LDAP Beans
	Setting the LDAP Connection Parameters
	Setting LDAP Connection Parameters in default_master.properties
	Setting LDAP Connection Parameters Manually

	Performing LDAP User Search
	Configuring JSBindAuthenticator
	Alternative to Bind Authentication
	Specifying userDnPatterns Parameters
	Specifying userSearch Parameters
	LDAP Search for Multiple Organizations

	Mapping the User Roles
	Configuring the User Role Mapping
	Mapping Roles to System Roles
	organizationRoleMap
	Defining User Roles Statically

	Setting Default Roles
	Avoiding Role Collisions
	Restricting the Mapping to Whitelisted Roles
	Supporting Additional Characters in Role Names

	Mapping the User Organization
	Mapping to Multiple Organizations
	Setting Up Organization Mapping
	Setting Up Default Admins for Organizations
	Mapping Organization Names

	Mapping to a Single Organization

	Setting Up Multiple Providers
	Authentication with Microsoft Active Directory
	Configuring User Search for Active Directory
	Configuring the Spring Referral Property

	Troubleshooting LDAP Configurations
	Planning for Troubleshooting
	Invalid Credentials Supplied Errors
	Problems Communicating with the LDAP Server
	Incorrect Connection URL
	Problem
	Solution

	Timeout Errors
	Problem
	Solution

	Problems with User Search
	Unable to Find an LDAP Branch
	Problem
	Solution

	Incorrect or Missing Partition
	Problem
	Solution

	Invalid Search Filter
	Problem
	Solution

	Failure to Bind the User
	Problem
	Solution

	User Not Found By Valid Search Filter
	Problem
	Solution

	Login Page Not Loading
	Invalid Application Context File
	Problem
	Solution

	XML Special Characters in Role Names
	Problem
	Solution

	Missing Bean Definition
	Problem
	Solution

	Missing Java Class
	Problem
	Solution

	Login Displays Security Check Page
	Problem
	Solution

	Adding a Custom Processor
	Restarting JasperReports Server

	CAS Authentication
	Overview of External CAS Authentication
	CAS Server for Testing
	Configuring Java to Trust the CAS Certificate
	Configuring JasperReports Server for CAS Authentication
	Beans to Configure
	Setting CAS Authentication Properties
	Configuring casServiceProperties
	Configuring externalAuthProperties

	Mapping the User Roles
	Defining Static Roles
	Retrieving User Roles from an External Data Source
	Setting Default Roles
	Avoiding Role Collisions
	Restricting the Mapping to Whitelisted Roles
	Supporting Additional Characters in Role Names

	Setting the User Organization
	Mapping to Multiple Organizations
	Setting Multiple Organizations Using LDAP
	Setting Multiple Organizations Using JDBC

	Mapping to a Single Organization

	Adding a Custom Processor
	Customizing the JasperReports Server Interface for CAS
	Restarting JasperReports Server

	External Database Authentication
	Overview of External Database Authentication
	Configuring JasperReports Server for External Database Authentication
	Beans to Configure
	Setting the Database Connection Parameters
	Setting Database Connection Parameters in default_master.properties
	Setting Database Connection Parameters Manually

	Configuring User Authentication and Authorization via Database Queries
	Setting the Password Encryption
	Mapping User Roles
	Retrieving Roles from the External Database
	Defining Static Roles
	Setting Default Roles
	Avoiding Role Collisions
	Restricting the Mapping to Whitelisted Roles
	Supporting Additional Characters in Role Names

	Setting the User Organization
	Setting Up Default Admins for Organizations
	Mapping Organization Names
	Specifying a Single Organization

	Adding a Custom Processor
	Configuring the Login Page for a Single-Organization Deployment
	Restarting JasperReports Server

	Token-based Authentication
	Overview of Token-based Authentication
	Configuring JasperReports Server for Token-based Authentication
	Overview of Token-based Authentication Beans
	Configuring the Token
	Security of the Token
	proxyPreAuthenticatedProcessingFilter bean
	Setting Token Decryption

	preAuthenticatedUserDetailsService

	User Roles
	Mapping User Roles
	Setting Default Roles
	Avoiding Role Collisions
	Restricting the Mapping to Whitelisted Roles
	Supporting Additional Characters in Role Names

	Defining Static Roles

	Mapping the User Organization
	Setting Up Default Admins for Organizations
	Mapping Organization Names
	Specifying a Single Organization

	Adding a Custom Processor
	Restarting JasperReports Server

	OAuth Authentication
	OAuth Authentication Flow in JasperReports Server
	Configuring OAuth
	How to Enable OAuth in JasperReports Server
	Configuring JasperReports Server to use OAuth Authentication
	OAuth Configuration Properties
	Sample Integration with OAuth2 Provider
	Mapping External OAuth Roles to Internal JasperReports Server Roles
	Placing a User into an Organizational Hierarchy
	Mapping User Profile Attributes
	Defining Administrators

	Advanced Topics
	Internal Authentication Beans
	External Authentication Framework
	External Authentication Beans

	Creating a Custom Processor
	Authentication Based on Request
	Other Customizations

	Jaspersoft Documentation and Support Services
	Legal and Third-Party Notices

