
JasperReports® IO Professional
User Guide
Software Release 3.2

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED
TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO
SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT FOUND
IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE
(AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP
END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS
DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND
AN AGREEMENT TO BE BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER SEPARATE SOFTWARE LICENSE TERMS AND
IS NOT PART OF A TIBCO PRODUCT. AS SUCH, THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR
AGREEMENT WITH TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES, AND INDEMNITIES.
DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN DISCRETION AND SUBJECT TO THE LICENSE TERMS
APPLICABLE TO THEM. BY PROCEEDING TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this document may be reproduced in any form without the
written authorization of Cloud Software Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Jaspersoft, JasperReports, and Visualize.js are registered trademarks of Cloud Software Group, Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned for
identification purposes only.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ
ME" FILES.

This and other products of Cloud Software Group, Inc. may be covered by registered patents. Please refer to Cloud Software Group's Virtual Patent
Marking document (https://www.tibco.com/patents) for details.

Copyright © 2005-2023. Cloud Software Group, Inc. All Rights Reserved.

Version 0423-JRI32-09 of the JasperReports IO Professional User Guide

https://www.tibco.com/patents

TABLE OF CONTENTS

Chapter 1 Introduction to JasperReports IO Professional Edition 7
1.1 JasperReports IO Professional Edition License Usage and Restrictions 7
1.2 Installing JasperReports IO Using the Standalone Package 8
1.2.1 System Requirements 8
1.2.2 Starting JasperReports IO 8

1.3 Installing JasperReports IO For AmazonWeb Services 9
1.3.1 Prerequisites 9
1.3.2 Required Permissions 9
1.3.3 Accepting Terms of Use 9
1.3.4 Supported Instance Types 10
1.3.5 Creating a JasperReports IO Instance from a CloudFormation Template 10
1.3.6 Creating a Repository Folder in Your S3 Bucket 11
1.3.7 Correcting an Invalid S3 Bucket 11

Chapter 2 Managing JasperReports IO 13
2.1 JasperReports IO Directories 13
2.2 JasperReports IO Reporting Service andWeb Application Directories 14
2.3 Web Application Server 14
2.3.1 Configuring the Web Application Server 15
2.3.2 Web Application 15

2.4 JasperReports IO Repository 16
2.4.1 Repository Directory Structure 16
2.4.2 Data Sources and Data Adapters 16
2.4.3 Reports 17

2.5 Managing AmazonWeb Services for JasperReports IO 18
2.5.1 AWS S3 Bucket Repository 18
2.5.2 Referring to Reports in the AWS S3 Bucket Repository 19
2.5.3 JasperReports IO for AWS and VPC Security 20
2.5.4 Customizations for JasperReports IO for AWS 20

2.6 Cloud Repositories for JasperReports IO 21
2.6.1 OAuth2 Repositories 21
2.6.2 Accessing Cloud Repositories 21

2.7 Security 22

Cloud Software Group, Inc. 3

JasperReports IO Professional User Guide

Chapter 3 REST API Reference - The reports Service 23
3.1 Running a Report 23

Chapter 4 REST API Reference - The reportExecutions Service 25
4.1 Running a Report Asynchronously 25
4.2 Polling Report Execution 28
4.3 Requesting Page Status 28
4.4 Requesting Report Execution Details 29
4.5 Requesting Report Output 30
4.6 Requesting Report Bookmarks 31
4.7 Exporting a Report Asynchronously 33
4.8 Modifying Report Parameters 34
4.9 Polling Export Execution 34
4.10 Stopping Running Reports 35
4.11 Removing a Report Execution 36

Chapter 5 JavaScript API Reference - jrio.js 37
5.1 Loading the jrio.js Script 37
5.2 Configuring the JasperReports IO Client 38
5.3 Usage Patterns 39
5.4 Testing Your JavaScript 39
5.5 Changing the Look and Feel 40
5.5.1 Customizing the UI with CSS 40
5.5.2 Customizing the UI with Themes 40

Chapter 6 JavaScript API Reference - report 43
6.1 Report Properties 43
6.2 Report Functions 46
6.3 Report Structure 49
6.4 Rendering a Report 50
6.5 Setting Report Parameters 51
6.6 Rendering Multiple Reports 52
6.7 Resizing a Report 53
6.8 Setting Report Pagination 54
6.9 Creating Pagination Controls (Next/Previous) 54
6.10 Creating Pagination Controls (Range) 55
6.11 Exporting From a Report 56
6.12 Exporting Data From a Report 58
6.13 Refreshing a Report 59
6.14 Canceling Report Execution 60

Chapter 7 JavaScript API Reference - Errors 63
7.1 Error Properties 63
7.2 Common Errors 63
7.3 Catching Report Errors 64

Chapter 8 JavaScript API Usage - Report Events 67
8.1 Tracking Completion Status 67

4 Cloud Software Group, Inc.

8.2 Listening for Page Totals 67
8.3 Customizing a Report's DOM Before Rendering 68

Chapter 9 JavaScript API Usage - Hyperlinks 71
9.1 Structure of Hyperlinks 71
9.2 Customizing Links 72
9.3 Drill-Down in Separate Containers 73
9.4 Accessing Data in Links 74

Chapter 10 JavaScript API Usage - Interactive Reports 77
10.1 Interacting With JIVE UI Components 77
10.2 Using Floating Headers 80
10.3 Changing the Chart Type 80
10.4 Changing the Chart Properties 82
10.5 Undo and Redo Actions 83
10.6 Sorting Table Columns 85
10.7 Filtering Table Columns 86
10.8 Formatting Table Columns 88
10.9 Conditional Formatting on Table Columns 91
10.10 Sorting Crosstab Columns 93
10.11 Sorting Crosstab Rows 94
10.12 Implementing Search in Reports 95
10.13 Providing Bookmarks in Reports 96
10.14 Disabling the JIVE UI 97

Index 99

Cloud Software Group, Inc. 5

JasperReports IO Professional User Guide

6 Cloud Software Group, Inc.

CHAPTER 1 INTRODUCTION TO JASPERREPORTS IO PROFESSIONAL
EDITION

JasperReports IO is an HTTP-based reporting service for JasperReports Library, providing an interface to the
JasperReports Library reporting engine through the use of a REST API and a JavaScript API. The REST API
provides services for running, exporting, and interacting with reports while the JavaScript API allows you to embed
reports and their input controls into your web pages and web applications using JavaScript frameworks for the
layout and style sheets (CSS) to control the look and feel. Report templates, data sources, and all report resources
are stored in a local repository or in an Amazon Web Services (AWS) S3 bucket and you have the option of
creating new report templates using Jaspersoft Studio.

The JasperReports IO service can be deployed in a variety ways, from a single web application with interactive
reports for small-scale deployments, to container-based deployments in the cloud, where specialized services
running in separate containers work together to deliver a single, embeddable reporting service for large-scale
deployments.

JasperReports IO is available as a downloadable standalone package and as an hourly offering on the AWS
Marketplace.

This chapter contains the following sections:
• JasperReports IO Professional Edition License Usage and Restrictions
• Installing JasperReports IO Using the Standalone Package
• Installing JasperReports IO For Amazon Web Services

1.1 JasperReports IO Professional Edition License Usage and Restrictions
This version of JasperReports IO can simultaneously execute up to the licensed number of concurrent report runs,
with queuing of additional requests. Usage is restricted to a single machine instance and it may not be deployed
into an environment where multiple JasperReports IO instances are used to distribute the workload for a single end
use application.

JasperReports IO licensees are entitled to use Jaspersoft Studio Professional to create reports. JasperReports IO
Professional for AWS users must register via a link on the AWS Marketplace product page to receive a copy of
Jaspersoft Studio Professional. Users that obtain the downloadable copy of JasperReports IO from the
Jaspersoft.com site are entitled to apply the license file from the JasperReports IO Professional installation to their
Jaspersoft Studio installation.

Cloud Software Group, Inc. 7

JasperReports IO Professional User Guide

1.2 Installing JasperReports IO Using the Standalone Package

1.2.1 System Requirements
The JasperReports IO service can run a maximum of 2, 5, or 10 reports concurrently, depending on your license.
The following table contains the recommended system requirements for JasperReports IO based on the maximum
number of concurrent report runs:

Maximum Concurrent Report Runs Processor RAM

2 1 - 2 cores 512MB - 2GB

5 2 - 4 cores 2GB - 4GB

10 2 - 4 cores 4GB - 8GB

1.2.2 Starting JasperReports IO
JasperReports IO is available as a standalone ZIP package, downloadable from jaspersoft.com.

Different download packages are available for Windows, Linux, and macOS.

This installation package contains all the services and components needed for creating your own client applications
and embeddable reports, including the JasperReports IO Professional reporting service, the JavaScript API, a web
server, a sample web application, data source adapters, and a Java Runtime Environment. The reporting service and
sample web application are deployed when you start the web server. The sample web application helps you get
started with creating your own application by demonstrating the capabilities of the JasperReports IO reporting
service and the JasperReports IO JavaScript API.

See “Managing JasperReports IO” on page 13 for information on the contents and directory structure of
JasperReports IO.

To start the JasperReports IO reporting service:
1. Download the standalone package for your machine's operating system.
2. Extract the standalone package and open the extracted folder.
3. Run the start script to launch the web server.

a. If you are using Windows, run the start.bat script.
b. If you are using Linux or macOS, run start.sh.
The script starts the web server. The JasperReports IO web application is ready for use.

4. To test the demo web application, open a browser and go to the following URL: http://localhost:8080
The browser opens the sample JasperReports IO web application. The sample application displays details about
how to work with JasperReports IO.

5. To shut down the web server, run the stop script.
a. If you are using Windows, run the stop.bat script.
b. If you are using Linux or macOS, run stop.sh.

8 Cloud Software Group, Inc.

Chapter 1 Introduction to JasperReports IO Professional Edition

1.3 Installing JasperReports IO For Amazon Web Services
This section covers the JasperReports IO For Amazon Web Services (AWS) Hourly offering. You can purchase the
product directly on the AWS Marketplace.

1.3.1 Prerequisites
You'll need a few things before you can install and run JasperReports IO on Amazon Web Services:
• An Amazon Web Services account.

If you already have an account, log in to AWS.
To create an AWS account, go to the Amazon Web Services sign in page, click Create a new AWS
account button, and follow the instructions.

If you have a personal Amazon.com account stored in your browser, AWS uses that account by default. You
need to sign out of Amazon or, preferably, use a different browser to set up an AWS account separate from
your personal account.

• A valid Amazon key pair in your account. If you don't have a valid key pair, follow the instructions on the
AWS documentation site: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

• The Required Permissions for using our CloudFormation template.

1.3.2 Required Permissions
Using our CF templates typically requires some admin permissions. AWS permissions required to launch a new
JasperReports IO instance include:
• CloudFormation create stack and events
• Create and run EC2 instances
• Create EC2 security groups
• Create IAM resources
• Create S3 bucket
• Create CloudWatch log (if selected)

1.3.3 Accepting Terms of Use
You need to accept the terms of use for both the AWS Marketplace and Jaspersoft. This is a single process with
multiple steps.

To accept the license agreement:
1. Go to the Jaspersoft listing on the Amazon Marketplace. You can use the link provided here, or use the

Marketplace search function to locate the page.
2. Click the link for the JasperReports IO For AWS product.

This page shows the total projected charges plus EC2 charges. Simply visiting a page does not place your
order.

3. Click Continue to go to the Launch page.
4. Verify the information on this page and click Accept Terms.
When your order is processed you'll receive an email confirmation.

Cloud Software Group, Inc. 9

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://aws.amazon.com/marketplace/search/results/ref=sp_navgno_search_box?page=1&searchTerms=jaspersoft

JasperReports IO Professional User Guide

1.3.4 Supported Instance Types
The following is a list of the instance types supported for JasperReports IO:
• T2 Micro (t2.micro)
• T2 Medium (t2.medium)

Performance may vary based on system attributes, such as network, bandwidth, memory requirements for a given
use case, query requirements, and the like.

For more information about EC2 instance types, see the AWS documentation:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

1.3.5 Creating a JasperReports IO Instance from a CloudFormation Template
A stack is a collection of AWS resources you create and delete as a single unit. Our CloudFormation template
creates the following resources and bundles them into a usable stack:
• IAM role.
• S3 bucket.
• EC2 instance with JasperReports IO installed, configured, and using the IAM role for appropriate credentials.

To create a JasperReports IO instance:
1. Open the Launching Jaspersoft for AWS web page.
2. Click the Launch Jaspersoft IO for AWS tab.
3. Click the URL for your region. The Select Template page appears.

By default, AWS provides a stack template source URL. Do not change this.
4. Click Next. The Specify Details page appears.
5. In the Stack Name field, give your CloudFormation stack a unique name.
6. Select an InstanceType from the drop down. See 1.3.4, “Supported Instance Types,” on page 10 for more

information.
7. In the KeyName field, enter an existing key pair name.
8. In the RemoveSamples field, select whether to remove the sample web application and reports from your

JasperReports IO instance's repository.
9. Choose the VpcId from your account.
10. Choose the SubnetId from the VPC.
11. Choose whether to create a publicly accessible IP address for the instance using EnablePublicIp. Default is

True. Select False to refuse.
12. In the SecuredIp field, enter the IP address and mask for SSH access.
13. Choose whether to enable CloudWatch logs for your instance by selecting Yes for CloudWatchIntegration.
14. In the S3BucketName field, enter the name of the S3 bucket where you want to store your JasperReports IO

reports and customizations. The S3 bucket must be in the same region as your JasperReports IO instance. A
new S3 bucket will be created if you leave the field empty.

If you enter an existing S3 bucket's name incorrectly, you will experience errors when using JasperReports
IO because the S3 bucket doesn't exist. See 1.3.7, “Correcting an Invalid S3 Bucket,” on page 11 for
instructions on fixing the issue.

15. Click Next. The Options page appears.

10 Cloud Software Group, Inc.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Chapter 1 Introduction to JasperReports IO Professional Edition

16. Add any tags you want use to simplify administration of your infrastructure.
A tag consists of a key/value pair and will flow to resources inside your stack. You can add up to 10 unique
keys to each instance, along with an optional value for each key.

17. If you want all operations for the stack limited to a certain role, use the Permissions section to choose the
role.

18. In the Rollback Triggers section, set alarms you want CloudFormation to use to monitor the creation of the
stack. If any alarms are triggered, CloudFormation stops of the creation of the stack and rolls it back.

19. Expand the Advanced section and set your notification, timeout, and other options.
20. Click Next. The Review page appears.

Double-check your template, parameter, and option information.
21. Click the acknowledgment check box, then click Create.

You'll see your Stack Name listed in a table. While it's being created the Status column will display CREATE_
IN_PROGRESS. After a few minutes the status should change to CREATE_COMPLETE. If the status changes
to ROLLBACK instead of CREATE_COMPLETE, you may need to accept the Terms of Use. Check the Events
tab for more information.

22. Select your complete instance and click the Outputs tab. Here you'll find the name of the S3 bucket for your
repository, the link for the CloudWatch log, and the Getting Started URL for logging into the JasperReports IO
web application if you enabled a publicly accessible IP address.

1.3.6 Creating a Repository Folder in Your S3 Bucket
When setting up your JasperReports IO instance, you will need to create a repository folder in your S3 bucket to
store the resources to create and run your reports.

To create a repository folder:
1. On the AWS Management Console home page, click S3.
2. Click the name of the bucket for your instance or cluster.
3. Click Create Folder.
4. Enter remoteRepository for the name of the folder.
5. Select None (Use bucket settings) for the encryption setting.
6. Click Save.

AWS creates the new remoteRepository folder.

You can create the repository directories for your report resources in the new remoteRepository folder and upload
your files. See “Managing JasperReports IO” on page 13 for more information on the repository directory
structure.

1.3.7 Correcting an Invalid S3 Bucket
If you enter the incorrect name for an existing S3 bucket when creating your instance, you will need to update the
settings for the instance and associated IAM role to point them to the correct S3 bucket.

To correct the S3 bucket:
1. On the AWS Management Console home page, click EC2.
2. Click Instances in the sidebar.
3. Click on the instance with the invalid S3 bucket in the table.

Cloud Software Group, Inc. 11

JasperReports IO Professional User Guide

4. Click Actions > Instance State > Stop to stop the instance.
5. Click Actions > Instance Settings > View/Change User Data.
6. Locate the s3.repository.bucket and replace the invalid S3 bucket name with the correct one.
7. Click Save.
8. Return to the AWS Management Console home page and click IAM.
9. Click Roles in the sidebar.
10. Click the name of the IAM role created for your JasperReports IO instance in the table.
11. On the Permissions tab, expand the policy and click S3 under Service.

The tab displays a list of S3 actions.
12. Click Edit Policy.
13. Click the JSON tab.
14. Locate Resource and replace the invalid S3 bucket name with the correct one. For example:

{
"Statement": [

{
"Action": [

"s3:Get*",
"s3:List*"

],
"Resource": [

"arn:aws:s3:::jrio-jrios3bucket-12",
"arn:aws:s3:::jrio-jrios3bucket-12/*"

],
"Effect": "Allow"
}

]
}

15. Click Review policy.
AWS displays the S3 service you are updating. You can click S3 to review the service before committing your
changes.

16. Click Save changes.
AWS updates the IAM role with the S3 bucket changes.

17. Return to the AWS Management Console home page and click IAM.
18. Restart your instance.

12 Cloud Software Group, Inc.

CHAPTER 2 MANAGING JASPERREPORTS IO
After installing JasperReports IO, you will need to create the reports, web applications, and anything else you
require for reporting and store the files in a repository for the reporting service to use. The JasperReports IO
installation includes many sample files you can use for reference. You will need to use a file browser on the host
machine to view and manage the contents of the JasperReports IO installation.

This chapter covers the basics of managing your JasperReports IO installation, including:
• file directory structure
• the web application server and web applications
• the repository
• AWS S3 buckets
• cloud repositories
• security permissions

Unless noted otherwise, all references to JasperReports IO are for the standalone version, not JasperReports IO for
AWS.

For JasperReports IO for AWS, the reporting service is part of an instance hosted on AmazonWeb Services.
Use the AWSManagement Console to manage the JasperReports IO instance hosted on the service. See
2.5, “Managing Amazon Web Services for JasperReports IO ,” on page 18 for information on managing
JasperReports IO for AWS.

This chapter includes the following sections:
• JasperReports IO Directories
• JasperReports IO Reporting Service and Web Application Directories
• Web Application Server
• JasperReports IO Repository
• Managing Amazon Web Services for JasperReports IO
• Cloud Repositories for JasperReports IO
• Security

2.1 JasperReports IO Directories
The directory where JasperReports IO is installed on the host machine is referred to as <jrio-install> in this
guide. The <jrio-install> directory contains the start and stop scripts for the server and the license agreement.

Cloud Software Group, Inc. 13

JasperReports IO Professional User Guide

The contents of JasperReports IO are organized as the following directories when first installed:

Directory Description

docker Contains a dockerfile for creating a docker image of JasperReports IO, a start script
for the image, and a repository configuration file.

jetty Contains the Eclipse Jetty web application server that hosts the JasperReports IO
web application. See 2.3, “Web Application Server,” on page 14 for more inform-
ation.

jre Contains the Java Runtime Environment for running the JasperReports IO reporting
service.

jrio Contains the files for the JasperReports IO reporting service and web applications.
See 2.2, “JasperReports IO Reporting Service and Web Application Dir-
ectories,” on page 14 for more information.

repository The repository stores all the resources used to run and create reports, including data
source definitions, JRXML files, datatypes, and helper files such as images. See 2.4,
“JasperReports IO Repository,” on page 16 for more information.

Table 2-1 JasperReports IO Directories

2.2 JasperReports IO Reporting Service and Web Application Directories
The <jrio-install>/jrio/webapps directory contains the files for the JasperReports IO reporting service,
JavaScript API, and the sample web application.

Directory Description

jrio The JasperReports IO web application, including the reporting service and all con-
figuration files.

jrio-client Contains the files for JasperReports IO's JavaScript API, including the jrio.js file and
UI themes. See JavaScript API for more information.

jrio-docs Contains the files for the JasperReports IO sample web application, which demon-
strates the capabilities of the reporting service, as well as documentation and report
samples.

ROOT The sample html file in this directory forwards root requests to the jrio-docs web
application.

Table 2-2 Web Application Directories

2.3 Web Application Server
The JasperReports IO reporting service is deployed in a Java web application on a Eclipse Jetty web server
included with JasperReports IO. You can create a web application with interactive reports and the web application

14 Cloud Software Group, Inc.

Chapter 2 Managing JasperReports IO

server will handle all HTTP requests from users. The web application server is located in the <jrio-
install>/jetty directory. For information on the Eclipse Jetty web server, see the Jetty documentation.

In JasperReports IO, there are two scripts in the <jrio-install> directory to start and stop the Eclipse Jetty server and
the JasperReports IO reporting service. The script to start the web application server is start.bat for Windows and
start.sh for Mac OS and Linux, and the stop script is stop.bat for Windows and stop.sh for Mac OS and Linux.

2.3.1 Configuring the Web Application Server
The start script specifies several startup configuration parameters for the server that can be changed to better suit
your needs.

2.3.1.1 Java Virtual Machine Heap Memory

There are two parameters for specifying the amount of heap memory allocated to the JasperReports IO reporting
service's Java web application when it starts up. The -Xms<size> parameter specifies the initial heap memory size
for the web application and the -Xmx<size> parameter specifies the maximum heap memory size. The following
examples shows an initial heap memory size of 256 MB and a maximum size of 512 MB:

Linux: ./jre/bin/java -Xms256m -Xmx512m -jar ./jetty/start.jar

Windows: jre\bin\java -Xms256m -Xmx512m -jar jetty\start.jar

Mac OS: ./jre/Contents/Home/bin/java -Xms256m -Xmx512m -jar ./jetty/start.jar

2.3.1.2 Web Application Server Port

By default, the web application server starts on port 8080, but if this port is already in use on your host machine,
you can edit the start script to change the following setting to another port number:

-Djetty.http.port=8080

2.3.1.3 Web Application Server Stop Port and Stop Key

The start and stop scripts define the stop port and stop key settings required for stopping the web application
server. The stop port is the number of the port on the host machine that listens for termination requests and the stop
key is a key that must be port of the stop request. These settings must match in both scripts in order for the web
application server to shut down properly. The following is an example of the stop port and key settings:

-DSTOP.PORT=8989 -DSTOP.KEY=st0p_J3Tty

2.3.2 Web Application
When the web application server is running, the user's web browser will access the HTML files in the <jrio-
install>/repository/ROOT folder when they open http://<jrio>:8080 in their browser. You can store the
files for your web application in this folder or create an index.html file to redirect the user's browser to a web
application in another directory. For example, the sample index.html in the directory that was created during
installation redirects the user's browser to http://<jrio>:8080/jrio-docs, where the sample web application
that comes with JasperReports IO is installed.

Cloud Software Group, Inc. 15

https://www.eclipse.org/jetty/documentation/current/

JasperReports IO Professional User Guide

2.4 JasperReports IO Repository
The JasperReports IO repository is a folder-based structure where all the resources used to run and create reports
are stored and from where they are retrieved when reports are executed by the JasperReports IO reporting service.
You can have the repository on the host machine or an AWS S3 bucket.

The type of repository, its location in the JasperReports IO file structure, and other specific repository
implementation properties can be specified the following configuration file:

<js-install>/jrio/webapps/jrio/WEB-INF/applicationContext-repository.xml

JasperReports IO comes with a repository full of sample reports and resources in the <js-
install>/repository directory, but you can create your own repository. If you are using JasperReports IO for
AWS, you will have to create a repository in an S3 bucket. See 1.3.6, “Creating a Repository Folder in Your S3
Bucket,” on page 11 for more information.

2.4.1 Repository Directory Structure
The JasperReports IO repository is structured as follows:

Directory Description

data Contains the data source adapters and data source files for your reports.

images Contains image files used in reports.

JR-INF Contains the configuration files for report execution.

reports Contains report templates.

Table 2-3 Repository Directories for Sample Reports

2.4.2 Data Sources and Data Adapters
A data adapter is a resource that specifies how and where to obtain data. Specifically, it is an object that contains
information about how to connect to or retrieve the data, and the logic to do that. This information includes, URL,
user, password, paths, etc. Data adapters also contain the logic to prepare all parameters for JasperReports IO to run
the query and iterate data. All the connections are opened and passed directly to JasperReports during report
generation. A data adapter does not contain any data itself, which are stored in data sources.

The sample repository installed with JasperReports IO contains multiple data adapters and data sources in the <js-
install>/repository/data directory that you can use for your own reports. These data adapters include:
• JDBC connection
• CSV connection
• Excel connection
• Empty connection
• JNDI connection
• Remote XML connection

JasperReports IO can use other types of data adapters that are not included in the sample repository. You can create
your own data adapters for JasperReports IO either by using the DataAdapter Wizard in Jaspersoft Studio or by
creating a custom data adapter using a JRDAX file.

16 Cloud Software Group, Inc.

Chapter 2 Managing JasperReports IO

2.4.3 Reports
The repository resource that aggregates all information needed to run a report is called a JasperReport. A
JasperReport is based on a JRXML file that conforms to the JasperReports Library that JasperReports IO uses to
render reports. Users can create reports for JasperReports IO using Jaspersoft Studio.

A JasperReport is a complex resource composed of other resources:

• The main JRXML file that defines the report.

• A data source that supplies data for the report.

• A query if none is specified in the main JRXML.

• The query may specify its own data source, which overrides the data source defined in the report.

• Input controls for parameters that users may enter before running the report. Input controls are composed of either
a datatype definition or a list of values.

• Any additional file resources, such as images and fonts.

• If the report includes subreports, the JRXML files for the subreports.

End users interact with a JasperReport as a single resource, but report creators must define all of the component
resources.

Refer to the Jaspersoft Studio User Guide for more information on creating reports.

2.4.3.1 Configuring the Web Application Server to Reference the Repository

In JasperReports IO, the repository containing the sample report templates used by the sample web application is
located in the <jrio-install>/jrio/repository directory. Since this repository folder is not located within
the JasperReports IO web application folder, you will need to configure the <js-
install>/jrio/webapps/WEB-INF/applicationContext-repository.xml file to point the web
application to the repository directory.

There are two different ways to point the web application to a repository on the host machine: using a relative file
path using the WebappRelativeRepositoryFactory bean or an absolute file path using the
FileRepositoryService bean.

To use an relative file path, locate the WebappRelativeRepositoryFactory bean in the
applicationContext-repository.xml file and enter the relative file path as the value for the root property:

<bean class="com.jaspersoft.jrio.common.repository.WebappRelativeRepositoryFactory">
<property name="jasperReportsContext" ref="baseJasperReportsContext"/>
<property name="root" value="../../../repository"/>

</bean>

Since the web application is deployed to the <jrio-install>jrio/webapp/jrio directory, use
"../../../repository" as the relative file path to point the web application to the repository in the <jrio-
install>/jrio/repository directory.

If you want to use an absolute file path to the repository directory, change repository bean class from
com.jaspersoft.jrio.common.repository.WebappRelativeRepositoryFactory to
com.jaspersoft.jrio.common.repository.FileSystemRepository and edit the value for the second
<constructor-arg> to add the absolute file path:

<bean class="com.jaspersoft.jrio.common.repository.FileSystemRepository">

Cloud Software Group, Inc. 17

JasperReports IO Professional User Guide

<constructor-arg><ref bean="baseJasperReportsContext"/></constructor-arg>
<constructor-arg><value>/mnt/jrio-repository</value></constructor-arg>

</bean>

Use a slash (/) at the beginning of the URI for the root directory.

If you are using an AWS S3 bucket for the repository, refer to the 2.5.1, “AWS S3 Bucket Repository,” on
page 18 for instructions on configuring the web application server to use the bucket.

2.4.3.2 Configuring the Web Application Server to Use Multiple Repositories

If you use multiple repository directories to store your report templates and resources, JasperReports IO can treat
these separate directories as a single repository through absolute file paths. A report will work if its JRXML
template is in one repository and its resources are in a second. Add a FileRepositoryService beans to the
<js-install>/jrio/webapps/WEB-INF/applicationContext-repository.xml file for each repository
you want to use.

<bean class="com.jaspersoft.jrio.common.repository.FileSystemRepository">
<constructor-arg><ref bean="baseJasperReportsContext"/></constructor-arg>
<constructor-arg><value>/mnt/repository1</value></constructor-arg>

</bean>

<bean class="com.jaspersoft.jrio.common.repository.FileSystemRepository">
<constructor-arg><ref bean="baseJasperReportsContext"/></constructor-arg>
<constructor-arg><value>/mnt/repository2</value></constructor-arg>

</bean>

2.5 Managing Amazon Web Services for JasperReports IO
This section describes how to use an AWS S3 bucket for a repository for JasperReports IO, referring to reports
stored in an S3 bucket, and customizations for JasperReports IO for AWS.

2.5.1 AWS S3 Bucket Repository
JasperReports IO comes with a sample configuration settings for connecting your standalone JasperReports IO
instance to an AWS S3 bucket as a repository. The S3 bucket can either be public and accessed without credentials
or accessed securely using AWS credentials. Locate and the S3RepositoryService bean in the <js-
install>/jrio/webapps/WEB-INF/applicationContext-repository.xml configuration file to
implement an AWS S3 bucket for a repository:

<bean class="com.jaspersoft.jrio.common.repository.s3.S3RepositoryService">
<property name="jasperReportsContext" ref="baseJasperReportsContext"/>
<property name="s3Service">

<bean class="com.jaspersoft.jrio.common.repository.s3.S3ServiceFactory">
<property name="region" value="us-east-1"/>

<!--
<property name="accessKey" value="put-id-here"/>
<property name="secretKey" value="put-key-here"/>

-->
</bean>

</property>

18 Cloud Software Group, Inc.

Chapter 2 Managing JasperReports IO

<property name="bucketName" value="jrio-repo-sample"/>
<property name="pathPrefix" value="jrio-repository/"/>

<bean class="com.jaspersoft.jrio.common.repository.s3.S3RepositoryPersistenceServiceFactory"
factory-method="instance"/>

</bean>

You will need to enter the region, S3 bucket name, and the path to the repository.

Use the accessKey and secretKey properties to enter your AWS ID and key. These credentials are optional if
the S3 bucket is public.

If you created your JasperReports IO from the CloudFormation template for AWS, this configuration file will
appear similar to the following:

<bean class="com.jaspersoft.jrio.common.repository.s3.S3RepositoryService">
<property name="jasperReportsContext" ref="baseJasperReportsContext"/>
<property name="s3Service">

<bean class="com.jaspersoft.jrio.common.repository.s3.S3ServiceFactory">
<property name="region" value="${s3.repository.region:null}"/>

<!--
<property name="accessKey" value="put-id-here"/>
<property name="secretKey" value="put-key-here"/>

-->
</bean>

</property>
<property name="bucketName" value="${s3.repository.bucket:null}"/>
<property name="pathPrefix" value="${s3.repository.path.prefix:null}"/>

</bean>

The ${...} is automatically populated by user data that was generated when the JasperReports IO instance was
created.

You do not have to provide your AWS credentials if you created a new S3 bucket or selected an existing one as
when creating the JasperReports IO instance using the CloudFormation template. An IAM Role is automatically
created that will allow the JasperReports IO instance to connect to the S3 bucket without having to provide the
credentials.

2.5.2 Referring to Reports in the AWS S3 Bucket Repository
For storing report resources in an AWS S3 bucket, you will need to create a folder in the bucket called
"remoteRepository." See 1.3.6, “Creating a Repository Folder in Your S3 Bucket,” on page 11 for instructions
on adding this folder to your S3 bucket.

JasperReports IO accesses the reports in the bucket through the REST and JavaScript APIs using relative URIs
with /remoteRepository as the root directory. For example, if you have a report stored in the repository at
/remoteRepository/reports/myReport.jrxml, the reference through the API will be
/reports/myReport. When opening the report in the viewer, the URL will be:

http://<JRIO domain>:<JRIO port>/jrio-docs/viewer/viewer.html?jr_report_
uri=/reports/myReport

See the REST API and JavaScript API chapters for more information on how to use them.

Cloud Software Group, Inc. 19

JasperReports IO Professional User Guide

2.5.3 JasperReports IO for AWS and VPC Security
When creating your JasperReports IO for AWS instance, you select the VPC and subnet it belongs to. An AWS
VPC isolates its resources to a virtual network with advanced security features to protect the user's resources. AWS
VPCs include security features such as subnets within Availability Zones, IP ranges, route tables, and security
groups to protect the resources.

In order to access the services and resources you want to use, your JasperReports IO for AWS instance needs to be
on the same VPC as those services and the appropriate subnets across Availability Zones. If you have issues
connecting your JasperReports IO for AWS instance to the resources and services it needs, you may need to update
the AWS security features for the VPC to allow access.

2.5.4 Customizations for JasperReports IO for AWS
JasperReports IO and JasperReports IO for AWS allows you to use your S3 bucket to store customized
configuration files for your JasperReports IO instance. In the S3 bucket, you must recreate the JasperReports IO
directory structure for the configuration files in a folder called customizations, starting with the folders at the
<jrio-install> root level, such as jrio and repository.

If you want to remove the customized file from the instance, you will need to copy the original configuration file to
the S3 bucket and reboot the instance. This will replace the file on the instance and remove the customizations
from JasperReports IO. Deleting the customized file from the S3 bucket without adding a replacement will not
remove the customizations when the instance is restarted. JasperReports IO for AWS includes a special service
jrio start/stop command for starting and stopping the web application.

To upload your customization:
1. On the AWS Management Console homepage, click S3.
2. Find the bucket for your JasperReports IO instance and click on the name.
3. Click Create Folder and create a folder called customizations.
4. Click on the name of the customizations folder.
5. Click Create Folder and recreate the paths to your files.

For example, if you want to upload a configuration file that goes in the <jrio-
install>/jrio/webapps/jrio/WEB-INF/classes directory, you will have to create a new folder for
each directory in that file path.

6. After creating the folder paths, browse to the folder for your configuration file.
7. Click Upload.
8. Click Add files and find the configuration file on your local machine.
9. Click Upload to upload the configuration file.

AWS uploads the file and stores it in the S3 bucket.
10. With the configuration file in place, SSH into your instance using your AWS private key and user name.
11. Stop the JasperReports IO instance using the following command:

sudo service jrio stop

12. Start the JasperReports IO instance:
sudo service jrio start

When the JasperReports IO instance restarts , the changes based on the configuration file will be in place.

20 Cloud Software Group, Inc.

Chapter 2 Managing JasperReports IO

2.6 Cloud Repositories for JasperReports IO
This section describes how JasperReports IO can use reports and resources stored in the cloud repositories (Google
Drive, Github, and Dropbox) using OAuth 2.0 standard protocol for authorization.

2.6.1 OAuth2 Repositories
By default, JasperReports IO comes with three preconfigured OAuth2 repositories for Google Drive, Github, and
Dropbox. Each of these is defined in a separate configuration file as follows:

[JRIO_WEB_APP]/WEB-INF/applicationContext-google-drive.xml

[JRIO_WEB_APP]/WEB-INF/applicationContext-github.xml

[JRIO_WEB_APP]/WEB-INF/applicationContext-dropbox.xml

To use these repositories, each repository configuration file needs to be updated with actual clientId and
secretKey values. These values are obtained from the target cloud storage providers while registering your
JasperReports IO instance with them.

The configuration file for Google Drive repository will appear similar to the following:

<bean class="com.jaspersoft.jrio.common.repository.google.GoogleDriveRepositoryService">
<property name="jasperReportsContext" ref="baseJasperReportsContext"/>
<property name="googleDriveProvider">

<bean class-
s="com.jaspersoft.jrio.common.repository.google.RequestTokenGoogleDriveProvider">

<property name="googleDriveFactory">
<bean class="com.jaspersoft.jrio.common.repository.google.GoogleDriveFactory">

<property name="clientId" value="put-client-id-here"/>
<property name="secretKey" value="put-secret-key-here"/>

</bean>
</property>
<property name="serviceCache">

<bean class="com.jaspersoft.jrio.common.execution.cache.LocalCacheAccessFactory">
<property name="cacheContainer" ref="localCacheManager"/>
<property name="cacheRegion" value="googleDriveServices"/>

</bean>
</property>

</bean>
</property>

</bean>

2.6.2 Accessing Cloud Repositories
The sample web application helps you connect to the cloud repositories (Google Drive, Github, and Dropbox) by
providing a login UI. You can access the sample cloud repository login UI if you have the required OAuth2
credentials, namely clientId and secretKey. These values need to specify in both repository configuration files and
client application configuration file [JRIO_DOCS_WEB_APP]/WEB-
INF/classes/jasperreports.properties.

The sample web application acts as a proxy to the JasperReports IO application and acquires the OAuth2
authorization tokens from the cloud services. Then these access tokens are passed to the JasperReports IO, allowing
JasperReports IO to load reporting resources from the remote repositories.

Cloud Software Group, Inc. 21

JasperReports IO Professional User Guide

2.7 Security
JasperReports IO provides security for your web applications and reports through a protection domain used by the
Java security manager. A protection domain defines the security permissions, public keys, and URI for a group of
JasperReports IO components, such as report expressions and repository JAR files. You can customize the
permissions using the <jrio-install>/jrio/security.policy file.

JasperReports IO comes with a preconfigured protection domain that by default gives users all permissions to the
files for:
• The Java Virtual Machine.
• The web application server.
• The JasperReports IO reporting service web applications.

The preconfigured protection domain restricts users' permissions to the following:
• Repository JARs.
• Report expressions.

The following shows the preconfigured protection domain settings in the security.policy file:

grant codeBase "file:${java.home}/lib/-" {
permission java.security.AllPermission;
};
grant codeBase "file:${java.home}/lib/ext/-" {

permission java.security.AllPermission;
};
grant codeBase "file:${user.dir}/jetty/-" {

permission java.security.AllPermission;
};
grant codeBase "file:${user.dir}/jrio/webapps/-" {

permission java.security.AllPermission;
};
//permissions for JRIO repository jars

grant codeBase "file:/__jrio/repository/jars/" {
//permission java.security.AllPermission;
};
//permissions for JR reports
grant codeBase "file:/__jrio/repository/reports/" {
};

This default configuration restricts a user's ability to pass parameters within the path of a report. You can edit the
protection domain to customize the security permissions for JasperReports IO to meet your security needs.

More details about the syntax of the security.policy file and what permissions are available can be found in
the Java Security documentation.

The protection domain and the Java security manager for used by JasperReports IO are not active when you first
install the reporting service. To activate the security manager and protection domain, edit the start script in the
<jrio-install> directory to uncomment the following:

-Djava.security.manager -Djava.security.policy=jrio/security.policy

The Java security manager and protection domain will be active when you start the web application server.

22 Cloud Software Group, Inc.

https://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-specTOC.fm.html

CHAPTER 3 REST API REFERENCE - THE reports SERVICE
The rest_v2/reports service has a simple API for obtaining report output, such as PDF and XLSX. The service also
provides functionality to interact with running reports, report options, and input controls.

3.1 Running a Report
The reports service allows clients to receive report output in a single request-response. The reports service is a
synchronous request, meaning the caller will be blocked until the report is generated and returned in the response.
For large datasets or long reports, the delay can be significant. If you want to use a non-blocking (asynchronous)
request, see Chapter 4, “REST API Reference - The reportExecutions Service,” on page 25

The output format is specified in the URL as a file extension to the report URI.

Method URL

GET http://<host>:<port>/jrio/rest_v2/reports/path/to/report.<format>?<arguments>

Argument Type/Value Description

<format> output
type

One of the following formats:
• Regular output: html, pdf, csv, docx, pptx, xlsx, rtf, odt, ods, xml
• Metadata output: data_csv, data_xlsx, data_json

page? Integer > 0 An integer value used to export a specific page.

anchor? String An anchor name in the generated report.

ignore
pagination?

Boolean When set to true, the report will be generated as a single page. This can be
useful for some formats such as csv. When omitted, this argument's default
value is false and the report is paginated normally.

<parameter> String Any parameter that is defined for the report. Parameters that are multivalue
may appear more than once. See examples below.

Cloud Software Group, Inc. 23

JasperReports IO Professional User Guide

baseUrl String Specifies the base URL that the report will use to load static resources such
as JavaScript files.

attachments
Prefix

attachments For HTML output, this property specifies the URL path to use for
downloading the attachment files (JavaScript and images).

Return Value on Success Typical Return Values on Failure

200 OK – The content is the requested file. 400 Bad Request – When incorrect format is
provided in the Get request.

404 Not Found –When the specified report URI is not
found in the repository.

The follow examples show various combinations of formats, arguments, and input controls:
http://<host>:<port>/jrio/rest_v2/reports/samples/reports/FirstJasper.html (all pages)
http://<host>:<port>/jrio/rest_v2/reports/samples/reports/FirstJasper.html?page=5
http://<host>:<port>/jrio/rest_v2/reports/samples/reports/FirstJasper.pdf (all pages)
http://<host>:<port>/jrio/rest_v2/reports/samples/reports/FirstJasper.pdf?page=5
http://<host>:<port>/jrio/rest_
v2/reports/samples/reports/chartthemes/ChartThemesReport.pdf?chartTheme=aegean

JasperReports IO does not support exporting Highcharts charts with background images to PDF, ODT,
DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have background
images to these formats, the background image is removed from the chart. The data in the chart is not
affected.

24 Cloud Software Group, Inc.

CHAPTER 4 REST API REFERENCE - THE reportExecutions
SERVICE

As described in Chapter 3, “REST API Reference - The reports Service ,” on page 23, synchronous report
execution blocks the client waiting for the response. When managing large reports that may take minutes to
complete, or when running a large number of reports simultaneously, synchronous report execution slows down the
client or uses many threads, each waiting for a report.

The rest_v2/reportExecutions service provides asynchronous report execution, so that the client does not need to
wait for report output. Instead, the client obtains a request ID and periodically checks the status of the report to
know when it is ready (also called polling). When the report is finished, the client can download the output.
Alternatively, the client can check when specific pages are finished and download available pages. The client can
also send an asynchronous request for other export formats (PDF, Excel, and others) of the same report. Again the
client can check the status of the export and download the result when the export has completed.
• Running a Report Asynchronously
• Polling Report Execution
• Requesting Page Status
• Requesting Report Execution Details
• Requesting Report Output
• Requesting Report Bookmarks
• Exporting a Report Asynchronously
• Modifying Report Parameters
• Polling Export Execution
• Stopping Running Reports
• Removing a Report Execution

4.1 Running a Report Asynchronously
In order to run a report asynchronously, the reportExecutions service provides a method to specify all the
parameters needed to launch a report. Report parameters are all sent as a reportExecutionRequest object. The
response from the server contains the request ID needed to track the execution until completion.

Cloud Software Group, Inc. 25

JasperReports IO Professional User Guide

Method URL

POST http://<host>:<port>/jrio/rest_v2/reportExecutions

Content-Type Content

application/json A complete ReportExecutionRequest in JSON format. See the example
and table below for an explanation of its properties.

Return Value on Success Typical Return Values on Failure

200 OK – The content contains a ReportExecution
descriptor. See below for an example

404 Not Found –When the report URI specified in the
request does not exist.

The following example shows the structure of the ReportExecutionRequest:

{
"reportUnitUri":"/samples/reports/chartthemes/ChartThemesReport",
"async":true,
"interactive":true,
"pages":"1-5",
"attachmentsPrefix":"/jrio/rest_v2/reportExecutions/

{reportExecutionId}/exports/{exportExecutionId}/attachments/",
"baseUrl":"/jrio",
"parameters":
{

"reportParameter":
[

{"name":"chartTheme","value":["aegean"]},
{"name":"anotherParamName","value":["value 1","value 2"]}

]
}

}

The following table describes the properties you can specify in the ReportExecutionRequest:

Property Required or
Default Description

reportUnitUri Required Repository path (URI) of the report to run.

outputFormat Required Specifies the desired output format:
• Regular output:

html, pdf, csv, docx, pptx, xlsx, rtf, odt, ods, xml
• Metadata output:

data_csv, data_xlsx, data_json

26 Cloud Software Group, Inc.

Chapter 4 REST API Reference - The reportExecutions Service

Property Required or
Default Description

ignorePagination Optional When set to true, the report is generated as a single long page.
This can be used with HTML output to avoid pagination. When
omitted, the ignorePagination property on the JRXML, if any, is
used.

pages Optional Specify a page range to generate a partial report. The format is:
<startPageNumber>-<endPageNumber>

async false Determines whether reportExecution is synchronous or
asynchronous. When set to true, the response is sent immediately
and the client must poll the report status and later download the
result when ready. By default, this property is false and the
operation will wait until the report execution is complete, forcing the
client to wait as well, but allowing the client to download the report
immediately after the response.

attachmentsPrefix attachments For HTML output, this property specifies the URL path to use for
downloading the attachment files (JavaScript and images). The full
path of the default value is:

{contextPath}/rest_v2/reportExecutions/
{reportExecutionId}/exports/{exportExecutionId}/attachments/

You can specify a different URL path using the placeholders
{contextPath}, {reportExecutionId}, and {exportExecutionId}.

baseUrl String Specifies the base URL that the report will use to load static
resources such as JavaScript files.

parameters See example A list of input control parameters and their values.

reportContainerWidth Optional This property specifies the width of the report container. A report
specifying this parameter with integer values receives the current
screen size width when the report is run.

When successful, the reply from the server contains the reportExecution descriptor. This descriptor contains the
request ID and status needed in order for the client to request the output. There are two statuses, one for the report
execution itself, and one for the chosen output format.

The following descriptor shows that the report was placed in the report execution queue ("status":"queued"):

{
"requestId":"9ecf5c6f-b70d-4170-8a3b-b305db4c2253",
"reportURI":"/samples/reports/chartthemes/ChartThemesReport",
"status":"queued"

}

The value of the async property in the request determines whether or not the report output is available when the
response is received. Your client should implement either synchronous or asynchronous processing of the response
depending on the value you set for the async property.

Cloud Software Group, Inc. 27

JasperReports IO Professional User Guide

4.2 Polling Report Execution
When requesting reports asynchronously, use the following method to poll the status of the report execution. The
request ID in the URL is the one returned in the reportExecution descriptor.

This service supports the extended status value that includes an appropriate message.

Method URL

GET http://<host>:<port>/jrio/rest_v2/reportExecutions/requestID/status/

Options Sample Return Value

accept: application/json { "value": "ready" }

accept:
application/status+json

{
"value": "failed",
"errorDescriptor": {

"message": "Input controls validation failure",
"errorCode": "input.controls.validation.error",
"parameters": ["Specify a valid value for type Integer."]

}
}

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the report status, as shown above. In the
extended format, error reports contain error messages suitable for
display.

404 Not Found –When the specified
requestID does not exist.

4.3 Requesting Page Status
When requesting reports asynchronously, you can also poll the status of a specific page during the report execution.
The executionId in the URL is the one returned in the reportExecution descriptor. This service returns a
response containing reportStatus, pageFinal, and pageTimestamp attributes.

Method URL

GET http://<host>:<port>/jrio/rest_
v2/reportExecutions/<executionId>/pages/<pageNumber>/status

Options Sample Response Content

accept: application/status+json {
"reportStatus": "ready",
"pageTimestamp": "0",
"pageFinal": "true"

}

28 Cloud Software Group, Inc.

Chapter 4 REST API Reference - The reportExecutions Service

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the page status, as shown
above.

404 Not Found –When the request ID specified
in the request does not exist.

4.4 Requesting Report Execution Details
Once the report is ready, your client must determine the names of the files to download by requesting the
reportExecution descriptor again. Specify the requestID in the URL as follows:

Method URL

GET http://<host>:<port>/jrio/rest_v2/reportExecutions/requestID

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content contains a ReportExecution
descriptor. See below for an example.

404 Not Found –When the request ID specified in the
request does not exist.

The reportExecution descriptor now contains the list of exports for the report, including the report output itself
and any other file attachments. File attachments such as images and JavaScript occur only with HTML export.

{
"status": "ready",
"totalPages": 47,
"requestId": "b487a05a-4989-8b53-b2b9-b54752f998c4",
"reportURI": "/reports/samples/AllAccounts",
"exports": [{

"id": "195a65cb-1762-450a-be2b-1196a02bb625",
"options": {

"outputFormat": "html",
"attachmentsPrefix": "./images/",
"allowInlineScripts": false

},
"status": "ready",
"outputResource": {

"contentType": "text/html"
},
"attachments": [{

"contentType": "image/png",
"fileName": "img_0_46_0"

},
{

"contentType": "image/png",
"fileName": "img_0_0_0"

Cloud Software Group, Inc. 29

JasperReports IO Professional User Guide

},
{

"contentType": "image/jpeg",
"fileName": "img_0_46_1"

}]
},
{

"id": "4bac4889-0e63-4f09-bbe8-9593674f0700",
"options": {

"outputFormat": "html",
"attachmentsPrefix": "{contextPath}/rest_v2/reportExecutions/{reportEx-

ecutionId}/exports/{exportExecutionId}/attachments/",
"baseUrl": "http://localhost:8080/jrio",
"allowInlineScripts": true

},
"status": "ready",
"outputResource": {

"contentType": "text/html"
},
"attachments": [{

"contentType": "image/png",
"fileName": "img_0_0_0"

}]
}]

}

When exporting a chart report to HTML, the image produced for the chart will be part of HTML, and can be in 2
formats - JavaScript or SVG:
• When "interactive" is set to true, it will be embedded as JavaScript in HTML which will use highcharts js to

render the chart.
• When "interactive" is set to false, the chart image will be embedded as SVG as part of HTML.

When the option net.sf.jasperreports.force.html.embed.image=false in WEB-INF/classes/jasperreports.properties in
combination with interactive=false, this will put the SVG images into attachments instead of HTML.

4.5 Requesting Report Output
After requesting a report execution and waiting synchronously or asynchronously for it to finish, your client is
ready to download the report output.

Every export format of the report has an ID that is used to retrieve it. For example, the HTML export in the
previous example has the ID 195a65cb-1762-450a-be2b-1196a02bb625. To download the main report output,
specify this export ID in the following method:

Method URL

GET http://<host>:<port>/jrio/rest_v2/reportExecutions/requestID/exports/
exportID/outputResource

30 Cloud Software Group, Inc.

Chapter 4 REST API Reference - The reportExecutions Service

Return Value on Success Typical Return Values on Failure

200 OK – The content is the main output of the report, in
the format specified by the contentType property of
the outputResource descriptor, for example:
text/html

400 Bad Request – When invalid values are provided
for export options in the request body.

404 Not Found –When the request ID specified in the
request does not exist.

For example, to download the main HTML of the report execution response above, use the following URL:
GET http://localhost:8080/jrio/rest_v2/reportExecutions/b487a05a-4989-8b53-b2b9-
b54752f998c4/exports/195a65cb-1762-450a-be2b-1196a02bb625/outputResource

JasperReports IO does not support exporting Highcharts charts with background images to PDF, ODT,
DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have background
images to these formats, the background image is removed from the chart. The data in the chart is not
affected.

To download file attachments for HTML output, use the following method. You must download all attachments to
display the HTML content properly. The given URL is the default path, but it can be modified with the
attachmentsPrefix property in the reportExecutionRequest, as described in 4.1, “Running a Report
Asynchronously,” on page 25.

Method URL

GET http://<host>:<port>/jrio/rest_
v2/reportExecutions/requestID/exports/exportID/attachments/fileName

Return Value on Success Typical Return Values on Failure

200 OK – The content is the attachment in the format
specified in the contentType property of the
attachment descriptor, for example:

image/png

404 Not Found –When the request ID specified in the
request does not exist.

For example, to download the one of the images for the HTML report execution response above, use the following
URL:
GET http://localhost:8080/jrio/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/html/attachments/img_0_46_0

4.6 Requesting Report Bookmarks
Some reports have additional meta-information associated with them, such as bookmarks and indexes of report
sections or parts. Clients can use this information to create a table of contents for the report with links to the
bookmarks and parts that are defined by the report. After running a report, you can request this information using
the same request ID.

Cloud Software Group, Inc. 31

JasperReports IO Professional User Guide

Method URL

GET http://<host>:<port>/jrio/rest_v2/reportExecutions/{executionId}/info

Options Sample Response Content

accept: application/json

accept: application/xml

A structure that contains bookmarks and report parts, as shown below.

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the report meta-
information, as shown below.

404 Not Found –When the request ID specified in the
request does not exist.

Example of a request URL:

https://localhost:8080/jasperserver[-pro]/rest_v2/reportExecutions/70b9b169-1c0e-431c-b8bc-
a6f49328bc75/info

JSON:

{
"bookmarks": {
"id": "bkmrk_1058907116",
"type": "bookmarks",
"bookmarks": [

{
"label": "USA shipments",
"pageIndex": 22,
"elementAddress": "0",
"bookmarks": [
{
"label": "Albuquerque",
"pageIndex": 22,
"elementAddress": "4",
"bookmarks": null

},
{
"label": "Anchorage",
"pageIndex": 23,
"elementAddress": "116",
"bookmarks": null

},
...

]
}

]
},

"parts": {
"id": "parts_533304192",
"type": "reportparts",
"parts": [

{

32 Cloud Software Group, Inc.

Chapter 4 REST API Reference - The reportExecutions Service

"idx": 0,
"name": "Table of Contents"

},
{
"idx": 3,
"name": "Overview"

},
{
"idx": 22,
"name": "USA shipments"

}
]

}
}

4.7 Exporting a Report Asynchronously
After running a report and downloading its content in a given format, you can request the same report in other
formats. As with exporting report formats through the user interface, the report does not run again because the
export process is independent of the report.

Method URL

POST http://<host>:<port>/jrio/rest_v2/reportExecutions/requestID/exports/

Content-Type Content

application/json Send an export descriptor in JSON format to specify the format and details of
your request. For example:

{
"outputFormat": "html",
"pages": "10-20",
"attachmentsPrefix": "./images/"

}

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content contains an exportExecution
descriptor. See below for an example.

404 Not Found –When the request ID specified in
the request does not exist.

The following example shows the exportExecution descriptor that the server sends in response to the export
request:

{
"id":"6b7ce8fa-f1d7-4d53-9af6-4569edb05d1b",
"status":"queued"

}

Cloud Software Group, Inc. 33

JasperReports IO Professional User Guide

4.8 Modifying Report Parameters
You can update the report parameters, also known as input controls, through a separate method before running an
existing report execution again. Use the following method to reexecute the report with a different set of parameter
values:

Method URL

POST http://<host>:<port>/jrio/rest_v2/reportExecutions/requestID/parameters

Media-Type Content

application/json [
{

"name":"someParameterName",
"value":["value 1", "value 2"]

},
{

"name":"someAnotherParameterName",
"value":["another value"]

}
]

Return Value on Success Typical Return Values on Failure

204 No Content – There is no content to return. 404 Not Found –When the request ID specified
in the request does not exist.

4.9 Polling Export Execution
As with the execution of the main report, you can also poll the execution of the export process. This service
supports the extended status value that includes an appropriate message.

Method URL

GET http://<host>:<port>/jrio/rest_v2/reportExecutions/requestID/exports/
exportID/status

Options Sample Return Value

accept: application/json { "value": "ready" }

accept:
application/status+json

{
"value": "failed",
"errorDescriptor": {

"message": "Input controls validation failure",
"errorCode": "input.controls.validation.error",
"parameters": ["Specify a valid value for type Integer."]

}
}

34 Cloud Software Group, Inc.

Chapter 4 REST API Reference - The reportExecutions Service

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the export status, as shown above. In
the extended format, error reports contain error messages suitable for
display.

404 Not Found –When the specified
request ID does not exist.

For example, to get the status of the HTML export in the previous example, use the following URL:
GET http://localhost:8080/jrio/rest_v2/reportExecutions/912382875_1366638024956_2/exports/195a65cb-
1762-450a-be2b-1196a02bb625/status

When the status is "ready" your client can download the new export output and any attachments as described in
4.5, “Requesting Report Output,” on page 30. For example:

GET http://localhost:8080/jrio/rest_v2/reportExecutions/912382875_1366638024956_2/exports/195a65cb-
1762-450a-be2b-1196a02bb625/outputResource
GET http://localhost:8080/jrio/rest_v2/reportExecutions/912382875_1366638024956_2/exports/195a65cb-
1762-450a-be2b-1196a02bb625/images/img_0_46_0

4.10 Stopping Running Reports
To stop a report that is running and cancel its output, use the PUT method and specify a status of "cancelled" in
the body of the request.

Method URL

PUT http://<host>:<port>/jrio]/rest_v2/reportExecutions/requestID/status/

Content-Type Content

application/json Send a status descriptor in JSON format with the value cancelled. For
example:

JSON: { "value": "cancelled" }

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK –When the report execution was successfully
stopped, the server replies with the same status:

{ "value": "cancelled" }

204 No Content – When the report specified by the
request ID is not running, either because it finished
running, failed, or was stopped by another process.

404 Not Found –When the request ID specified in the
request does not exist.

Cloud Software Group, Inc. 35

JasperReports IO Professional User Guide

4.11 Removing a Report Execution
Deleting a report that has been executed removes it from the cache and makes its output no longer available. If the
report execution is still running, it is stopped automatically then removed.

Method URL

DELETE http://<host>:<port>/jrio/rest_v2/reportExecutions/<executionID>

Return Value on Success Typical Return Values on Failure

204 No Content – The report execution was successfully
removed.

404 Not Found –When the request ID specified in the
request does not exist.

36 Cloud Software Group, Inc.

CHAPTER 5 JAVASCRIPT API REFERENCE - JRIO.JS
The JavaScript API exposed through jrio.js allows you to embed reports into your web pages and web applications.
The embedded elements are fully interactive, either through the UI or programmatically. Users navigate their data
in the context of your app, and you can dynamically compute, update, or render the jrio.js elements to create
seamless interaction. You can use JavaScript frameworks for layout and control the look and feel of all elements
through style sheets (CSS).

With the JavaScript API, you can invent new ways to merge data into your application, and make advanced
business intelligence available to your users.

This chapter contains the following sections:
• Loading the jrio.js Script
• Configuring the JasperReports IO Client
• Usage Patterns
• Testing Your JavaScript
• Changing the Look and Feel

Each function of the JasperReports IO JavaScript API is then described in the following chapters:
• JavaScript API Reference - report
• JavaScript API Reference - Errors

The last chapters demonstrate more advanced usage of the JasperReports IO JavaScript API:
• JavaScript API Usage - Report Events
• JavaScript API Usage - Hyperlinks
• JavaScript API Usage - Interactive Reports

5.1 Loading the jrio.js Script
The script to include on your HTML page is named jrio.js. It is located on your running instance of the
JasperReports IO JavaScript API distribution, which is available for download and can be deployed in your hosting
web application. Later on your page, you also need a container element to display the report from the script.

<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jrio-client/optimized-scripts/jrio/jrio.js"></script>
...
<!-- Provide a container for the report -->
<div id="reportContainer"></div>

Cloud Software Group, Inc. 37

JasperReports IO Professional User Guide

The content of jrio.js is type='text/javascript', but that is the default so you usually don't need to include it.

5.2 Configuring the JasperReports IO Client
Loading the jrio.js script as above gives you access to the JasperReports IO JavaScript API in your web page.

But this JasperReports IO client-side API needs to be configured to point to an existing JasperReports IO REST
reporting service URL which delivers the actual reports output to be displayed on the current page, the location of
the API scripts (either optimized or non-optimized) and UI theme.

This is achieved by calling the config() function on the jrio object made available globally on the page by the
loading of the jrio.js script:

jrio.config({
server : "http://bi.example.com:8080/jrio",
scripts : "http://bi.example.com:8080/jrio-client/optimized-scripts",
theme: {

href: "http://bi.example.com:8080/jrio-client/themes/default"
},
locale: "en_US"

});

You can specify several parameters when requesting the script:

Parameter Type or Value Description

server URL The URL to the JasperReports IO service that responds to the
report generating REST requests. This parameter is required.

scripts URL The URL to the folder containing the JasperReports IO
JavaScript API files, either in optimized or non-optimized
format. This parameter is required.

theme URL The URL to the folder containing the JasperReports IO
JavaScript UI theme files.

locale locale string Specify the locale to use for display and running reports. It
must be one of the locales supported by JasperReports IO.
The default is the locale configured on the server. This para-
meter is required.

logEnabled true|false Enable or disable logging. By default, it is disabled (false).

logLevel debug|info|warn|error Set the logging level. By default the level is error.

The server, scripts, and locale parameters are required. The jrio object may produce errors if they are
not set.

The scripts making up the JasperReports IO JavaScript API are available in two formats: optimized and non-
optimized. They are placed in separate folders in the JasperReports IO JavaScript API distribution under
/optimized-scripts and /scripts subfolders respectively.

38 Cloud Software Group, Inc.

Chapter 5 JavaScript API Reference - jrio.js

If you notice undesirable side-effects when including the JasperReports IO JavaScript library, change the client
configuration to use the optimized scripts to provide better protection, also known as encapsulation. For example,
the JasperReports IO JavaScript API functions might interfere with collapse functions on your menus. Non-
optimized scripts are preferred when you want to perform some runtime debugging for the JavaScript code.

If you want to used the optimized jrio.js script, use the following URL to load it: <script
src="http://bi.example.com:8080/myapp/jriojsapi/optimized-
scripts/jrio/jrio.js"></script>

If you want to use the non-optimized jrio.js script, you will have to use all of the following scripts:

<script src="http://bi.example.com:8080/myapp/jriojsapi/scripts/bower_com-
ponents/requirejs/require.js"></script>
<script src="http://bi.example.com:8080/myapp/jriojsapi/scripts/require.config.js"></script>
<script src="http://bi.example.com:8080/jrio-client/scripts/jrio/loader/jasper.js"></script>
<script src="http://bi.example.com:8080/jrio-client/scripts/jrio/jrio.js"></script>
<script>

require.config({
baseUrl: "http://bi.example.com:8080/myapp/jriojsapi/scripts"

});
</script>

5.3 Usage Patterns
After configuring the JasperReports IO client object, you write the callback that will execute inside this client
provided by jrio.js.

jrio.config({
server : "http://bi.example.com:8080/jrio",
scripts : "http://bi.example.com:8080/myapp/jriojsapi/optimized-scripts",
theme: {

href: "http://bi.example.com:8080/myapp/jriojsapi/themes/default"
},
locale: "en_US"

});
jrio(function(jrioClient) {

jrioClient.report({
resource: "/samples/reports/highcharts/HighchartsChart",
container: "#reportContainer",
error: function(err) {

alert(err);
},

});
});

5.4 Testing Your JavaScript
As you learn to use the JasperReports IO JavaScript API and write the JavaScript that embeds your reports into
your web app, you should have a way to run and view the output of your script.

In order to load jrio.js, your HTML page containing your JavaScript must be accessed through a web server.
Opening a static file with a web browser does not properly load the iframes needed by the script.

Cloud Software Group, Inc. 39

JasperReports IO Professional User Guide

One popular way to view your JasperReports IO output, is to use the jsFiddle online service. You specify your
HTML, JavaScript, and optional CSS in 3 separate frames, and the result displays in the fourth frame.

Another way to test your JavaScript is to use the app server bundled with JasperReports IO. If you deploy the
server from the installer with the Jetty web application server, you can create an HTML file at the root of one of
the web apps shipped with it by default, for example:

<jrio-install>/jrio/webapps/jrio-docs/testscript.html

Write your HTML and JavaScript in this file, and then you can run jrio.js by loading the file through the following
URL:

http://mydomain.com:8081/jrio-docs/testscript.html

5.5 Changing the Look and Feel
When you create a web application that embeds JasperReports IO content, you determine the look and feel of your
app through layout, styles, and CSS (Cascading Style Sheets). Most of the content that you embed consists of
reports and dashboards that you create with JasperReports IO or Jaspersoft Studio, where you set the appearance of
colors, fonts, and layout to match your intended usage.

But some JasperReports IO JavaScript API elements also contain UI widgets that are generated by the server in a
default style, for example the labels, buttons, and selection boxes for the input controls of a report. In general, the
default style is meant to be neutral and embeddable in a wide range of visual styles. If the default style of these UI
widgets does not match your app, there are two approaches described in the following sections:
• Customizing the UI with CSS – You can change the appearance of the UI widgets through CSS in your app.
• Customizing the UI with Themes – You can redefine the default appearance of the UI widgets in themes on

the server.

5.5.1 Customizing the UI with CSS
The UI widgets generated by the server have CSS classes and subclasses, also generated by the server, that you can
redefine in your app to change their appearance. To change the appearance of the generated widgets, create CSS
rules that you would add to CSS files in your own web app. To avoid the risk of unintended interference with other
CSS rules, you should define your CSS rules with both a classname and a selector, for example:

#inputContainer .jr-mInput-boolean-label {
color: #218c00;

}

To change the style of specific elements in the server's generated widgets, you can find the corresponding CSS
classes and redefine them. To find the CSS classes, write the JavaScript display the UI widgets, for example input
controls, then test the page in a browser. Use your browser's code inspector to look at each element of the
generated widgets and locate the CSS rules that apply to it. The code inspector shows you the classes and often lets
you modify values to preview the look and feel that you want to create.

5.5.2 Customizing the UI with Themes
You can redefine the default appearance of the UI widgets in themes on the server.

40 Cloud Software Group, Inc.

https://jsfiddle.net/

Chapter 5 JavaScript API Reference - jrio.js

Themes are CSS in the JasperReports IO JavaScript API. The UI widgets in JasperReports IO elements are
generated on the server and their look and feel is ultimately determined by themes.

Cloud Software Group, Inc. 41

JasperReports IO Professional User Guide

42 Cloud Software Group, Inc.

CHAPTER 6 JAVASCRIPT API REFERENCE - REPORT
The report function runs reports on on the JasperReports IO reporting service and displays the result in a
container that you provide. This chapter describes how to render a report in using the JasperReports IO JavaScript
API.

The report function also supports more advanced customizations of hyperlinks and interactivity that are described
in subsequent chapters:
• JavaScript API Usage - Hyperlinks
• JavaScript API Usage - Interactive Reports

This chapter contains the following sections:
• Report Properties
• Report Functions
• Report Structure
• Rendering a Report
• Setting Report Parameters
• Rendering Multiple Reports
• Resizing a Report
• Setting Report Pagination
• Creating Pagination Controls (Next/Previous)
• Creating Pagination Controls (Range)
• Exporting From a Report
• Exporting Data From a Report
• Refreshing a Report
• Canceling Report Execution

6.1 Report Properties
The properties structure passed to the report function is defined as follows:

Cloud Software Group, Inc. 43

JasperReports IO Professional User Guide

{
"title": "Report Properties",
"type": "object",
"description": "A JSON Schema describing a Report Properties",
"$schema": "http://json-schema.org/draft-04/schema#",
"properties": {

"server": {
"type": "string",
"description": "URL of JRS instance."

},
"resource": {

"type": "string",
"description": "Report resource URI."

},
"container": {

"oneOf": [
{

"type": "object",
"additionalProperties" : true,
"description": "DOM element to render report to"

},
{

"type": "string",
"description": "CSS selector for container to render report to."

}
]

},
"params": {

"type": "object",
"description": "Report's parameters values",
"additionalProperties": {

"type": "array"
}

},
"pages": {

"type": ["string", "integer", "object"],
"description": "Range of report's pages or single report page",
"pattern": "^[1-9]\\d*(\\-\\d+)?$",
"properties": {

"pages": {
"type": ["string", "integer"],
"description": "Range of report's pages or single report page",
"pattern": "^[1-9]\\d*(\\-\\d+)?$",
"minimum": 1

},
"anchor": {

"type": ["string"],
"description": "Report anchor"

}

44 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

},
"default": 1,
"minimum": 1

},
"scale" : {

"default": "container",
"oneOf" : [

{
"type": "number",
"minimum" : 0,
"exclusiveMinimum": true,
"description" : "Scale factor"

},
{

"enum": ["container", "width", "height"],
"default": "container",
"description" : "Scale strategy"

}
]

},
"defaultJiveUi": {

"type": "object",
"description": "Default JIVE UI options.",
"properties": {

"enabled": {
"type": "boolean",
"description": "Enable default JIVE UI.",
"default": "true"

},
"floatingTableHeadersEnabled": {

"type": "boolean",
"description": "Enable table floating headers.",
"default": "false"

},
"floatingCrosstabHeadersEnabled": {

"type": "boolean",
"description": "Enable crosstab floating header.",
"default": "false"

}
}

},
"isolateDom": {

"type": "boolean",
"description": "Isolate report in iframe.",
"default": "false"

},
"linkOptions": {

"type": "object",
"description": "Report's parameters values",
"properties": {

"beforeRender": {
"type": "function",
"description": "A function to process link - link element pairs."

Cloud Software Group, Inc. 45

JasperReports IO Professional User Guide

eport loading overlay",
"default": true

},
"scrollToTop": {

"type": "boolean",
"description": "Enable/disable scrolling to top after report rendering",
"default": true

},
"showAdhocChartTitle": {

"type": "boolean",
"description": "Enable/disable showing Ad Hoc chart reports title",
"default": true

}
},
"required": ["server", "resource"]

}

6.2 Report Functions
The report function exposes the following functions:

define(function () {

/**
* @param {Object} properties - report properties
* @constructor
*/

function Report(properties){}

/**
* Setters and Getters are functions around
* schema for bi component at ./schema/ReportSchema.json
* Each setter returns pointer to 'this' to provide chainable API
*/

/**
* Get any result after invoking run action, 'null' by default
* @returns any data which supported by this bi component
*/

Report.prototype.data = function(){};

/**
* Attaches event handlers to some specific events.
* New events overwrite old ones.

46 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

* @param {Object} events - object containing event names as keys and event handlers as val-
ues

* @return {Report} report - current Report instance (allows chaining)
*/

Report.prototype.events = function(events){};

//Actions

/**
* Perform main action for bi component
* Callbacks will be attached to deferred object.
* @param {Function} callback - optional, invoked in case of successful run
* @param {Function} errorback - optional, invoked in case of failed run
* @param {Function} always - optional, invoked always
* @return {Deferred} dfd
*/

Report.prototype.run = function(callback, errorback, always){};

/**
* Render report to container, previously specified in property.
* Clean up all content of container before adding Report's content
* @param {Function} callback - optional, invoked in case successful export
* @param {Function} errorback - optional, invoked in case of failed export
* @param {Function} always - optional, optional, invoked always
* @return {Deferred} dfd
*/

Report.prototype.render = function(callback, errorback, always){};

/**
* Refresh report execution
* @param {Function} callback - optional, invoked in case of successful refresh
* @param {Function} errorback - optional, invoked in case of failed refresh
* @param {Function} always - optional, invoked optional, invoked always
* @return {Deferred} dfd
*/

Report.prototype.refresh = function(callback, errorback, always){};

/**
* Cancel report execution
* @param {Function} callback - optional, invoked in case of successful cancel
* @param {Function} errorback - optional, invoked in case of failed cancel
* @param {Function} always - optional, invoked optional, invoked always
* @return {Deferred} dfd
*/

Report.prototype.cancel = function(callback, errorback, always){};

/**
* Update report's component
* @param {Object} component - jive component to update, should have id field
* @param {Function} callback - optional, invoked in case of successful update

Cloud Software Group, Inc. 47

JasperReports IO Professional User Guide

lways - optional, invoked optional, invoked always
* @return{Deferred} dfd
*/

Report.prototype.updateComponent = function(id, properties, callback, errorback, always){};

/**
* Save JIVE components state
* @param {Function} callback - optional, invoked in case of successful update
* @param {Function} errorback - optional, invoked in case of failed update
* @param {Function} always - optional, invoked optional, invoked always
* @return{Deferred} dfd
*/

Report.prototype.save = function(callback, errorback, always){};

/**
* Save JIVE components state as new report
* @param {Object} options - resource information (i.e. folderUri, label, description, over-

write flag)
* @param {Function} callback - optional, invoked in case of successful update
* @param {Function} errorback - optional, invoked in case of failed update
* @param {Function} always - optional, invoked optional, invoked always
* @return{Deferred} dfd
*/

Report.prototype.save = function(options, callback, errorback, always){};

/**
* Undo previous JIVE component update
* @param {Function} callback - optional, invoked in case of successful update
* @param {Function} errorback - optional, invoked in case of failed update
* @param {Function} always - optional, invoked optional, invoked always
* @return{Deferred} dfd
*/

Report.prototype.undo = function(callback, errorback, always){};

/**
* Reset report to initial state
* @param {Function} callback - optional, invoked in case of successful update
* @param {Function} errorback - optional, invoked in case of failed update
* @param {Function} always - optional, invoked optional, invoked always
* @return{Deferred} dfd
*/

Report.prototype.undoAll = function(callback, errorback, always){};

/**
* Redo next JIVE component update
* @param {Function} callback - optional, invoked in case of successful update
* @param {Function} errorback - optional, invoked in case of failed update
* @param {Function} always - optional, invoked optional, invoked always
* @return{Deferred} dfd
*/

Report.prototype.redo = function(callback, errorback, always){};

/**
* Export report to specific format, execute only after report run action is finished

48 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

6.3 Report Structure
The Report Data structure represents the rendered report object manipulated by the report function. Even though it
is named "data," it does not contain report data, but rather the data about the report. For example, it contains
information about the pages and bookmarks in the report.

The report structure also contains other components described elsewhere:
• The definitions of hyperlinks and how to work with them is explained in “Customizing Links” on page 72
• Details of the Jaspersoft Interactive Viewer and Editor (JIVE UI) are explained in “Interacting With JIVE UI

Components” on page 77.

{
"title": "Report Data",
"description": "A JSON Schema describing a Report Data",
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"totalPages": {
"type": "number",
"description": "Report's page total count"

},
"links": {

"type": "array",
"description": "Links extracted from markup, so their quantity depends on pages you

have requested",
"items": {

"$ref": "#/definitions/jrLink"
}

},
"bookmarks": {

"type": "array",
"description": "Report's bookmarks. Quantity depends on current page",
"items": {

"$ref": "#/definitions/bookmark"
}

},
"reportParts": {

"type": "array",
"description": "Report's parts. Quantity depends on current page",
"items": {

"$ref": "#/definitions/reportPart"
}

},
"components": {

"type": "array",
"description": "Components in report, their quantity depends on pages you have

requested",
"items": {

"type": "object",
"description": "JIVE components data"

}

Cloud Software Group, Inc. 49

JasperReports IO Professional User Guide

}
},
"definitions": {

"bookmark":{
"type": "object",
"properties":{

"page": "number",
"anchor": "string",
"bookmarks": {

"type": "array",
"items": {

"$ref": "#/definitions/bookmark"
}

}
}

},
"reportPart":{

"type": "object",
"properties":{

"page": "number",
"name": "string"

}
},
"jrLink": { // see chapter on hyperlinks
}

}
}

6.4 Rendering a Report
To run a report on the server and render it with JasperReports IO Javascript API, load the jrio.js script, configure
the JasperReports IO client object to point to the JasperReports IO REST service and to the needed Javascript files
and theme, and then call the report function providing the URI of the report to run, and the container where it
should be rendered on your page.

The following code example shows how to display a report that the user selects from a list.

jrio.config({
server : "http://bi.example.com:8080/jrio",
scripts : "https://bi.example.com/jrio-client/optimized-scripts",
theme: {

href: "https://bi.example.com/jrio-client/themes/default"
},
locale: "en_US"

});
jrio(function(jrioClient) {

var report,
selector = document.getElementById("selected_resource");

selector.addEventListener("change", function() {
report = createReport(selector.value);

});
report = createReport(selector.value);
function createReport(uri) {

return jrioClient.report({
resource: uri,

50 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

container: "#reportContainer",
error: failHandler

});
}
function failHandler(err) {

alert(err);
}

});

The HTML page that displays the report uses a static list of reports in a drop-down selector, but otherwise needs
only a container element.

<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jrio-client/optimized-scripts/jrio.js"></script>
<select id="selected_resource" name="report">
<option value="/samples/reports/TableReport">Table Report</option>
<option value="/samples/reports/highcharts/HighchartsChart">Highcharts</option>
</select>
<!--Provide container to render your visualization-->
<div id="reportContainer"/>

6.5 Setting Report Parameters
To set or change the parameter values, update the params object of the report properties and invoke the run
function again.

// update report with new parameters
report

.params({ "Country": ["USA"] })

.run();
...
// later in code
console.log(report.params()); // console log output: {"Country": ["USA"] }

The example above is trivial, but the power of the JasperReports IO JavaScript API comes from this simple code.
You can create any number of user interfaces, database lookups, or your own calculations to provide the values of
parameters. Your parameters could be based on 3rd party API calls that get triggered from other parts of the page
or other pages in your app. When your reports can respond to dynamic events, they are seamlessly embedded and
much more relevant to the user.

Here are further guidelines for setting parameters:
• If a report has required parameters, you must set them in the report object of the initial call, otherwise you'll

get an error. For more information, see “Catching Report Errors” on page 64.
• Parameters are always sent as arrays of quoted string values, even if there is only one value, such as ["USA"]

in the example above. This is also the case even for single value input such as numerical, boolean, or date/time
inputs. You must also use the array syntax for single-select values as well as multi-select parameters with only
one selection. No matter what the type of input, always set its value to an array of quoted strings.

• The following values have special meanings:
• "" – An empty string, a valid value for text input and some selectors.
• "~NULL~" – Indicates a NULL value (absence of any value), and matches a field that has a NULL value,

for example if it has never been initialized.

Cloud Software Group, Inc. 51

JasperReports IO Professional User Guide

• "~NOTHING~" – Indicates the lack of a selection. In multi-select parameters, this is equivalent to
indicating that nothing is deselected, thus all are selected. In a single-select non-mandatory parameter, this
corresponds to no selection (displayed as ---). In a single-select mandatory parameter, the lack of
selection makes it revert to its default value.

6.6 Rendering Multiple Reports
JavaScript Example:

jrio.config({
...

});
jrio(function(jrioClient) {

var reportsToLoad = [
"/samples/reports/TableReport",
"/samples/reports/highcharts/HighchartsChart",
"/samples/reports/cvc/Figures",
"/samples/reports/OrdersTable"

];
$.each(reportsToLoad, function (index, uri) {

var container = "#container" + (index + 1);
jrioClient(container).report({

resource: uri,
success: function () {

console.log("loaded: " + (index + 1));
},
error: function (err) {

alert(err.message);
}

});
});

});

Associated HTML:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.0/jquery.min.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.0/jquery-ui.min.js"></script>
<script src="http://bi.example.com:8080/jriosjapi/client/jrio.js"></script>
<table class="sample">

<tr>
<td id="container1"></td>
<td id="container2"></td>

</tr>
<tr>

<td id="container3"></td>
<td id="container4"></td>

</tr>
</table>

Associated CSS:

html, body {
}
table.sample {

52 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

width: 100%;
}
td#c1, td#c2, td#c3, td#c4 {

width: 50%;
}

6.7 Resizing a Report
When rendering a report, by default it is scaled to fit in the container you specify. When users resize their window,
reports will change so that they fit to the new size of the container. This section explains several ways to change
the size of a rendered report.

To set a different scaling factor when rendering a report, specify its scale property:
• container – The report is scaled to fully fit within the container, both in width and height. If the container

has a different aspect ratio, there will be white space in the dimension where the container is larger. This is the
default scaling behavior when the scale property is not specified.

• width – The report is scaled to fit within the width of the container. If the report is taller than the container,
users will need to scroll vertically to see the entire report.

• height – The report is scaled to fit within the height of the container. If the report is wider than the container,
users will need to scroll horizontally to see the entire report.

• Scale factor – A decimal value greater than 0, with 1 being equivalent to 100%. A value between 0 and 1
reduces the report from its normal size, and a value greater than 1 enlarges it. If either or both dimensions of
the scaled report are larger than the container, users will need to scroll to see the entire report.

In every case, the entire report is scaled in both directions by the same amount, you cannot change the aspect ratio
of tables and crosstab elements.

For example, to initialize the report to half-size (50%), specify the following scale:

var report = jrioClient.report({
resource: "/public/Sample",
container: "#reportContainer",
scale: 0.5

});

You can also change the scale after rendering, in this case to more than double size (250%):

report
.scale(2.5)
.run();

Alternatively, you can turn off the container resizing and modify the size of the container explicitly:

var report = jrioClient.report({
resource: "/public/Sample",
container: "#reportContainer",
scale: "container",
autoresize: false

});

$("#reportContainer").width(500).height(500);
report.resize();

Cloud Software Group, Inc. 53

JasperReports IO Professional User Guide

6.8 Setting Report Pagination
To set or change the pages displayed in the report, update the pages object of the report properties and invoke the
run function again.

report
.pages(5)
.run(); // re-render report with page 5 into the same container

report
.pages("2") // string is also allowed
.run();

report
.pages("4-6") // a range of numbers as a string is also possible
.run();

report
.pages({ // alternative object notation

pages: "4-6"
})
.run();

The pages object of the report properties also supports bookmarks by specifying the anchor property. You can
also specify both pages and bookmarks as shown in the example below. For more information about bookmarks,
see “Providing Bookmarks in Reports” on page 96.

report
.pages({ // bookmark inside report to navigate to

anchor: "summary"
})
.run();

report
.pages({ // set bookmark to scroll report to in scope of provided pages

pages: "2-5",
anchor: "summary"

})
.run();

6.9 Creating Pagination Controls (Next/Previous)
Again, the power of the JasperReports IO JavaScript API comes from these simple controls that you can access
programmatically. You can create any sort of mechanism or user interface to select the page. In this example, the
HTML has buttons that allow the user to choose the next or previous pages.

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
resource: "/samples/reports/TableReport",

54 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

container: "#reportContainer",
error: function(err) { alert(err); },

});

$("#previousPage").click(function() {
var currentPage = report.pages() || 1;

report
.pages(--currentPage)
.run()
.fail(function(err) { alert(err); });

});

$("#nextPage").click(function() {
var currentPage = report.pages() || 1;

report
.pages(++currentPage)
.run()
.fail(function(err) { alert(err); });

});
});

Associated HTML:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="http://bi.example.com:8080/jriosjapi/client/jrio.js"></script>

<button id="previousPage">Previous Page</button><button id="nextPage">Next Page</button>

<div id="reportContainer"></div>

6.10 Creating Pagination Controls (Range)
JavaScript Example:

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
resource: "/samples/reports/TableReport",
container: "#reportContainer",
error: function(err) { alert(err); },

});
$("#pageRange").change(function() {

report
.pages($(this).val())
.run()
.fail(function(err) { alert(err); });

});
});

Associated HTML:

Cloud Software Group, Inc. 55

JasperReports IO Professional User Guide

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="http://bi.example.com:8080/jriosjapi/client/jrio.js"></script>

Page range: <input type="text" id="pageRange"></input>

<div id="reportContainer"></div>

6.11 Exporting From a Report
To export a report, invoke its export function and specify the outputFormat property. You MUST wait until the run
action has completed before starting the export. The following export formats are supported:

"pdf", "docx", "pptx", "csv", "xlsx", "rtf", "odt", "ods", "html", "xml", "data_csv",
"data_json," "data_xlsx"

The last three are for pure data output, also known as "metadata" exporters in the JR Library, and you can learn
more about them in Exporting Data From a Report.

report.run(exportToPdf);

function exportToPdf() {
report

.export({
outputFormat: "pdf"

})
.done(function (link) {

window.open(link.href); // open new window to download report
})
.fail(function (err) {

alert(err.message);
});

}

The following sample exports 10 pages of the report to a paginated Excel spreadsheet:

report.run(exportToPaginatedExcel);

function exportToPaginatedExcel() {
report

.export({
outputFormat: "xlsx",
pages: "1-10",
ignorePagination: false

})
.done(function(link){

window.open(link.href); // open new window to download report
})
.fail(function(err){

alert(err.message);
});

}

The following sample exports the part of report associated with a named anchor:

56 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

report.run(exportPartialPDF);

function exportPartialPDF() {
report

.export({
outputFormat: "pdf",
pages: {

anchor: "summary"
}

})
.done(function(link){

window.open(link.href); //open new window to download report
})
.fail(function(err){

alert(err.message);
});

}

The following example creates a user interface for exporting a report:

jrio.config({
...

});
jrio(function(jrioClient) {

var $select = buildControl("Export to: ",
["pdf","xlsx","docx","pptx","csv","rtf","odt","ods","html","xml","data_csv","data_

json","data_xlsx"]),
$button = $("#button"),
report = jrioClient.report({

resource: "/samples/reports/OrdersTable",
container: "#reportContainer",
success: function () {

button.removeAttribute("disabled");
},
error: function (error) {

console.log(error);
}

});

$button.click(function () {

console.log($select.val());

report.export({
//export options here
outputFormat: $select.val(),
//exports all pages if not specified
//pages: "1-2"

}, function (link) {
var url = link.href ? link.href : link;
window.location.href = url;

}, function (error) {
console.log(error);

});
});

Cloud Software Group, Inc. 57

JasperReports IO Professional User Guide

function buildControl(name, options) {

function buildOptions(options) {
var template = "<option>{value}</option>";
return options.reduce(function (memo, option) {

return memo + template.replace("{value}", option);
}, "")

}

var template = "<label>{label}</label><select>{options}</select>
",
content = template.replace("{label}", name)

.replace("{options}", buildOptions(options));

var $control = $(content);
$control.insertBefore($("#button"));
//return select
return $($control[1]);

}
});

Associated HTML:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriosjapi/client/jrio.js"></script>

<button id="button" disabled>Export</button>
<!-- Provide a container for the report -->
<div id="reportContainer"></div>

6.12 Exporting Data From a Report
You can also request the raw data of the report in CSV, XLSX or JSON format.

The following example shows how to export pure data in CSV format using the metadata CSV exporter. CSV
output is plain text that you must parse to extract the values that you need.

report.run(exportToCsv);

function exportToCsv() {
report

.export({
outputFormat: "data_csv"

})
.done(function(link, request){

request()
.done(function(data) {

// use data here, data is CSV format in plain text
})
.fail(function(err){

//handle errors here
});

})
.fail(function(err){

58 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

alert(err.message);
});

}

The following example shows how to export data in JSON format. By its nature, JSON format can be used directly
as data within your JavaScript.

report.run(exportToJson);

function exportToJson() {
report

.export({
outputFormat: "data_json"

})
.done(function(link, request){

request({
dataType: "json"

})
.done(function(data) {

// use JSON data as objects here
})
.fail(function(err){

//handle errors here
});

})
.fail(function(err){

alert(err.message);
});

}

6.13 Refreshing a Report
JavaScript Example:

jrio.config({
...

});
jrio(function(jrioClient) {

var alwaysRefresh = false;

var report = jrioClient.report({
//skip report running during initialization
runImmediately: !alwaysRefresh,
resource: "/samples/reports/FirstJasper",
container: "#reportContainer",

});

if (alwaysRefresh){
report.refresh();

}

$("button").click(function(){
report

Cloud Software Group, Inc. 59

JasperReports IO Professional User Guide

.refresh()

.done(function(){console.log("Report Refreshed!");})

.fail(function(){alert("Report Refresh Failed!");});
});

});
});

Associated HTML:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="http://bi.example.com:8080/jriosjapi/client/jrio.js"></script>
<button>Refresh</button>
<div id="reportContainer"></div>

6.14 Canceling Report Execution
To stop a running report, call its cancel function:

...
report
.cancel()
.done(function(){

alert("Report Canceled");
})
.fail(function(){

alert("Report Failed");
});

The following example is more complete and creates a UI for a cancel button for a long-running report.

jrio.config({
...

});
jrio(function(jrioClient) {

var button = $("button");

var report = jrioClient.report({
resource: "/samples/reports/SlowReport",
container: "#reportContainer",
events: {

changeTotalPages : function(){
button.remove();

}
}

});

button.click(function () {
report

.cancel()

.then(function () {
button.remove();
alert("Report Canceled!");

})

60 Cloud Software Group, Inc.

Chapter 6 JavaScript API Reference - report

.fail(function () {
alert("Can't Cancel Report");

});
});

});

Associated HTML:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="http://bi.example.com:8080/jriosjapi/client/jrio.js"></script>
<button>Cancel</button>
<div id="reportContainer"></div>

Cloud Software Group, Inc. 61

JasperReports IO Professional User Guide

62 Cloud Software Group, Inc.

CHAPTER 7 JAVASCRIPT API REFERENCE - ERRORS
This chapter describes common errors and explains how to handle them with the JasperReports IO Javascript API.
• Error Properties
• Common Errors
• Catching Report Errors

7.1 Error Properties
The properties structure for Generic Errors is defined as follows:

{
"title": "Generic Errors",
"description": "A JSON Schema describing Visualize Generic Errors",
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"errorCode": {
"type": "string"

},
"message": {

"type": "string"
},
"parameters":{

"type": "array"
}

},
"required": ["errorCode", "message"]

}

7.2 Common Errors
The following table lists common errors, their messages, and causes.

Cloud Software Group, Inc. 63

JasperReports IO Professional User Guide

Error Message - Description

Page or app not responding {no_message} - If your page or web application has stopped working
without notification or errors, check that the server providing Jasper-
Reports IO JavaScript API is accessible and returning scripts.

unexpected.error An unexpected error has occurred - In most of cases this is either a
JavaScript exception or an HTTP 500 (Internal Server Error) response
from server.

schema.validation.error JSON schema validation failed: {error_message} - Validation against
schema has failed. Check the validationError property in object for
more details.

unsupported.
configuration.error

{unspecified_message} - This error happens only when isolateDom =
true and defaultJiveUi.enabled = true. These properties are
mutually exclusive.

container.not.found.error Container was not found in DOM - The specified container was not found
in the DOM:error.

report.execution.failed Report execution failed - The report failed to run on the server.

report.execution.cancelled Report execution was canceled - Report execution was canceled.

report.export.failed Report export failed - The report failed to export on the server.

licence.not.found JRIO missing appropriate license- The server's license was not found.

licence.expired JRIO missing appropriate license - The server's license has expired.

resource.not.found Resource not found in Repository - Either the resource doesn't exist in
the repository or the user doesn't have permissions to read it.

export.pages.out.range Requested pages {0} out of range - The user requested pages that don't
exist in the current export.

7.3 Catching Report Errors
To catch and handle errors when running reports, define the contents of the err function as shown in the following
sample:

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
error: function(err){

// invoked once report is initialized and has run
}

});

64 Cloud Software Group, Inc.

Chapter 7 JavaScript API Reference - Errors

report
.run()
.fail(function(err){

// handle errors here
});

)

Cloud Software Group, Inc. 65

JasperReports IO Professional User Guide

66 Cloud Software Group, Inc.

CHAPTER 8 JAVASCRIPT API USAGE - REPORT EVENTS
Depending on the size of your data, the report function can run for several seconds or minutes. You can listen for
events that give the status of running reports and display pages sooner.

This chapter contains the following sections:
• Tracking Completion Status
• Listening for Page Totals
• Customizing a Report's DOM Before Rendering

8.1 Tracking Completion Status
By listening for the reportCompleted event, you can give information or take action when a report finishes
rendering.

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
// run example with a very long report
resource: "/samples/reports/SlowReport",
container: "#reportContainer",
events: {

reportCompleted: function(status) {
alert("Report status: "+ status + "!");

}
},
error: function(error) {

alert(error);
},

});
});

8.2 Listening for Page Totals
By listening for the changeTotalPages event, you can track the filling of the report.

Cloud Software Group, Inc. 67

JasperReports IO Professional User Guide

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
// run example with a very long report
resource: "/samples/reports/SlowReport",
container: "#reportContainer",
events: {

changeTotalPages: function(totalPages) {
alert("Total Pages:" + totalPages);

}
},
error: function(error) {

alert(error);
},

});
});

8.3 Customizing a Report's DOM Before Rendering
By listening for the beforeRender event, you can access the Document Object Model (DOM) of the report to
view or modify it before it is displayed. In the example the listener finds span elements and adds a color style and
an attribute my-attr="test" to each one.

jrio.config({
...

});
jrio(function(jrioClient) {

// enable report chooser
$(':disabled').prop('disabled', false);

//render report from provided resource
startReport();

$("#selected_resource").change(startReport);

function startReport () {
// clean container
$("#reportContainer").html("");
// render report from another resource
jrioClient("#reportContainer").report({

resource: $("#selected_resource").val(),
events:{

beforeRender: function(el){
// find all spans
$(el).find(".jrPage td.jrcolHeader span")

.each(function(i, e){
// make them red
$(e).css("color","red")

.attr("data-my-attr", "test");
});

console.log($(el).find(".jrPage").html());
}

}

68 Cloud Software Group, Inc.

Chapter 8 JavaScript API Usage - Report Events

});
};

});;

The HTML page that displays the report uses a static list of reports in a drop-down selector, but otherwise needs
only a container element. This is similar to the basic report example in “Rendering a Report” on page 50, except
that the JavaScript above will change the report before it's displayed.

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>
<select id="selected_resource" disabled="true" name="report">

<option value="/samples/reports/TableReport">Table Report</option>
<option value="/samples/reports/OrdersTable">Orders Table</option>

</select>
<!-- Provide a container to render your visualization -->
<div id="reportContainer"></div>

Cloud Software Group, Inc. 69

JasperReports IO Professional User Guide

70 Cloud Software Group, Inc.

CHAPTER 9 JAVASCRIPT API USAGE - HYPERLINKS
Both reports and dashboards include hyperlinks (URLs) that link to websites or other reports. The JasperReports IO
JavaScript API gives you access to the links so that you can customize them or open them differently. For links
generated in the report, you can customize both the appearance and the container where they are displayed.

This chapter contains the following sections:
• Structure of Hyperlinks
• Customizing Links
• Drill-Down in Separate Containers
• Accessing Data in Links

9.1 Structure of Hyperlinks
The following JSON schema describes all the parameters on links, although not all are present in all cases.

"jrLink": {
"title": "JR Hyperlink",
"description": "A JSON Schema describing JR hyperlink",
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties":{

"id": {
"type": "string",
"description": "Hyperlink id, reflected in corresponding attribute in DOM. Is not

used for AdHocExecution hyperlink type."
},
"type": {

"type": "string",
"description": "Hyperlink type. Default types are LocalPage, LocalAnchor,

RemotePage, RemoteAnchor, Reference, ReportExecution, AdHocExecution. Custom hyperlink types are
possible"

},
"target": {

"type": "string",
"description": "Hyperlink target. Default targets are Self, Blank, Top, Parent. Cus-

tom hyperlink targets are possible"

Cloud Software Group, Inc. 71

JasperReports IO Professional User Guide

},
"tooltip": {

"type": "string",
"description": "Hyperlink tooltip"

},
"href": {

"type" : "string",
"description": "Hyperlink reference. Is an empty string for LocalPage, LocalAnchor

and ReportExecution hyperlink types"
},
"parameters": {

"type": "object",
"description": "Hyperlink parameters. Any additional parameters for hyperlink"

},
"resource": {

"type": "string",
"description": "Repository resource URI of resource mentioned in hyperlink. For

LocalPage and LocalAnchor points to current report, for ReportExecution - to _report parameter"
},
"pages": {

"type": ["integer", "string"],
"description": "Page to which hyperlink points to. Is actual for LocalPage,

RemotePage and ReportExecution hyperlink types"
},
"anchor": {

"type": "string",
"description": "Anchor to which hyperlink points to. Is actual for LocalAnchor,

RemoteAnchor and ReportExecution hyperlink types"
}

},
"required": ["type", "id"]

}

9.2 Customizing Links
You can customize the appearance of link elements in a generated report in two ways:
• The linkOptions exposes the beforeRender event to which you can add a listener with access to the links

in the document as element pairs.
• The normal click event lets you add a listener that can access to a link when it's clicked.

jrio.config({
...

});
jrio(function(jrioClient) {

jrioClient("#reportContainer").report({
resource: "/samples/reports/TableReport",
linkOptions: {

beforeRender: function (linkToElemPairs) {
linkToElemPairs.forEach(function (pair) {

var el = pair.element;
el.style.backgroundColor = "red";

});
},
events: {

72 Cloud Software Group, Inc.

Chapter 9 JavaScript API Usage - Hyperlinks

"click": function(ev, link){
if (confirm("Change color of link id " + link.id + " to green?")){

ev.currentTarget.style.backgroundColor = "green";
ev.target.style.color = "#FF0";

}
}

}
},
error: function (err) {

alert(err.message);
}

});
});

9.3 Drill-Down in Separate Containers
By using the method of listing for clicks on hyperlinks, you can write a JasperReports IO JavaScript API script that
sets the destination of drill-down report links to another container. This way, you can create display layouts or
overlays for viewing drill-down links embedded in your reports. This sample code also changes the cursor for the
embedded links, so they are more visible to users.

jrio.config({
...

});
jrio(function(jrioClient) {

jrioClient("#main").report({
resource: "/samples/reports/TableReport",
linkOptions: {

beforeRender: function (linkToElemPairs) {
linkToElemPairs.forEach(showCursor);

},
events: {

"click": function(ev, link){
if (link.type == "ReportExecution"){

jrioClient("#drill-down").report({
resource: link.parameters._report,
params: {

latitude: [link.parameters.latitude],
longitude: [link.parameters.longitude],
zoom: [link.parameters.zoom]

},
});

}
console.log(link);

}
}

},
error: function (err) {

alert(err.message);
}

});

function showCursor(pair){
var el = pair.element;
el.style.cursor = "pointer";

Cloud Software Group, Inc. 73

JasperReports IO Professional User Guide

}
});

Associated HTML:

<script src="http://underscorejs.org/underscore.js"></script>
<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>
<!-- Provide a container for the main report and one for the drill-down -->
<div>

<div id="main"></div>
<div id="drill-down"></div>

</div>

Associated CSS:

#main{
float: left;

}

#drill-down{
float: left;

}

9.4 Accessing Data in Links
In this example, we access the hyperlinks through the data.links structure after the report has successfully
rendered. From this structure, we can read the tooltips that were set in the JRXML of the report. The script uses the
information in the tooltips of all links in the report to create a drop-down selector of city name options.

By using link tooltips, your JRXML can create reports that pass runtime information to the display logic in your
JavaScripts.

jrio.config({
...

});
jrio(function(jrioClient) {

var $select = $("#selectCity"),
report = jrioClient.report({

resource: "/samples/reports/TableReport",
container: "#main",
success: refreshSelect,
error: showError

});
function refreshSelect(data){

console.log(data);
$.each(data.links, function (i, item) {

$select.append($('<option>', {
value: item.id,
text : item.tooltip

}));

74 Cloud Software Group, Inc.

Chapter 9 JavaScript API Usage - Hyperlinks

});
}

$("#previousPage").click(function() {
var currentPage = report.pages() || 1;
goToPage(--currentPage);

});

$("#nextPage").click(function() {
var currentPage = report.pages() || 1;
goToPage(++currentPage);

});

function goToPage(numder){
report

.pages(numder)

.run()
.done(refreshSelect)
.fail(showError);

}

function showError(err){
alert(err.message);

}

});

Associated HTML:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>
<select id="selectCity"></select>
<button id="previousPage">Previous Page</button>
<button id="nextPage">Next Page</button>
<!-- Provide a container for the main report -->
<div>

<div ></div>
<div id="main"></div>

</div>

Associated CSS:

#main{
float: left;

}

Cloud Software Group, Inc. 75

JasperReports IO Professional User Guide

76 Cloud Software Group, Inc.

CHAPTER 10 JAVASCRIPT API USAGE - INTERACTIVE REPORTS
Most reports rendered by the JasperReports IO service have interactive abilities such as column sorting provided by
a feature called JIVE: Jaspersoft Interactive Viewer and Editor. The JIVE UI is the interface of the report viewer
which can be implemented in client applications using the JasperReports IO JavaScript API.

Not only does the JIVE UI allow users to sort and filter regular reports, it also provides many opportunities for you
to further customize the appearance and behavior of your reports through the JasperReports IO JavaScript API.

This chapter contains the following sections:
• Interacting With JIVE UI Components
• Using Floating Headers
• Changing the Chart Type
• Changing the Chart Properties
• Undo and Redo Actions
• Sorting Table Columns
• Filtering Table Columns
• Formatting Table Columns
• Conditional Formatting on Table Columns
• Sorting Crosstab Columns
• Sorting Crosstab Rows
• Implementing Search in Reports
• Providing Bookmarks in Reports
• Disabling the JIVE UI

10.1 Interacting With JIVE UI Components
The JasperReports IO report interface exposes the updateComponent function that gives your script access to the
JIVE UI. Using the updateComponent function, you can programmatically interact with the JIVE UI to do such
things as set the sort order on a specified column, add a filter, and change the chart type. In addition, the undoAll
function acts as a reset.

For the API reference of the JasperReports IO report interface, see “Report Functions” on page 46.

First, your script must enable the default JIVE UI to make its components available after running a report:

Cloud Software Group, Inc. 77

JasperReports IO Professional User Guide

var report = jrioClient.report({
resource: "/samples/reports/TableReport",
defaultJiveUi : {

enabled: true
}

});
...
var components = report.data().components;

The components that can be modified are columns and charts. These components of the JIVE UI have an ID, but it
may change from execution to execution. To refer to these components, create your report in JRXML and use the
net.sf.jasperreports.components.name property to name them. In the case of a column, this property
should be set on the column definition in the table model. In Jaspersoft Studio, you can select the column in the
Outline View, then go to Properties > Advanced, and under Misc > Properties you can define custom
properties.

Then you can reference the component by this name, for example a column named sales, and use the
updateComponent function to modify it.

report.updateComponent("sales", {
sort : {

order : "asc"
}

});

Or:

report.updateComponent({
name: "sales",
sort : {

order : "asc"
}

});

We can also get an object that represents the named component of the JIVE UI:

var salesColumn = report
.data()
.components
.filter(function(c){ return c.name === "sales"})
.pop();

This example assumes you have a report whose components already have names, in this case, columns named
ORDERID and SHIPNAME:

jrio.config({
...
});
jrio(function(jrioClient) {

//render report from provided resource
var report = jrioClient.report({

78 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

resource: "/samples/reports/OrdersTable",
container: "#reportContainer",
success: printComponentsNames,
error: handleError

});

$("#resetAll").on("click", function() {
report.undoAll();

});

$("#changeOrders").on("click", function() {
report.updateComponent("ORDERID", {

sort: {
order: "asc"

},
filter: {

operator: "greater_or_equal",
value: 10900

}
}).fail(handleError);

});

$("#sortCustomers").on("click", function() {
report.updateComponent("SHIPNAME", {

sort: {
order: "desc"

}
}).fail(handleError);

});

//show error

function handleError(err) {
alert(err.message);

}

function printComponentsNames(data) {
data.components.forEach(function(c) {

console.log("Component Name: " + c.name, "Component Label: " + c.label);
});

}
});

The associated HTML has buttons that will invoke the JavaScript actions on the JIVE UI:

<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>
<button id="resetAll">Reset All</button>
<button id="changeOrders">View Top Orders</button>
<button id="sortCustomers">Sort Customers</button>
<!-- Provide a container for the report -->
<div id="reportContainer"></div>

Cloud Software Group, Inc. 79

JasperReports IO Professional User Guide

10.2 Using Floating Headers
One feature of the JIVE UI for tables and crosstabs is the floating header. When you turn on floating headers, the
header rows of a table or crosstab float at the top of the container when you scroll down. The report container must
allow scrolling for this to take effect. This means that CSS property overflow with values like scroll or auto
must be specifically set for the report container.

To turn on floating headers for your interactive reports, set the following parameters when you enable the JIVE UI:

var report = jrioClient.report({
resource: "/samples/reports/TableReport",
defaultJiveUi : {

floatingTableHeadersEnabled: true,
floatingCrosstabHeadersEnabled: true

}
});

10.3 Changing the Chart Type
If you have the name of a chart component, you can easily set a new chart type and redraw the chart.

var mySalesChart = report
.data()
.components
.filter(function(c){ return c.name === "salesChart"})
.pop();

mySalesChart.chartType = "Bar";

report
.updateComponent(mySalesChart)
.done(function(){

alert("Chart type changed!");
})
.fail(function(err){

alert(err.message);
});

Or:

report
.updateComponent("salesChart", {

chartType: "Bar"
})
.done(function(){

alert("Chart type changed!");
})
.fail(function(err){

alert(err.message);
});

The following example creates a drop-down menu that lets users change the chart type. You could also set the chart
type according to other states in your client.

This code also relies on the report.chart.types interface.

80 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

jrio.config({
...

});
jrio(function(jrioClient) {

//persisted chart name
var chartName = "chartOne",

$select = buildControl("Chart types: ", jrioClient.report.chart.types),
report = jrioClient.report({

resource: "/samples/reports/highcharts/HighchartsChart",
container: "#reportContainer",
success: selectDefaultChartType

});

$select.on("change", function () {
report.updateComponent(chartName, {

chartType: $(this).val()
})
.done(function (component) {

chartComponent = component;
})
.fail(function (error) {

alert(error);
});

});

function selectDefaultChartType(data) {
var component = data.components

.filter(function (c) {
return c.name === chartName;

})
.pop();

if (component) {
$select.find("option[value='" + component.chartType + "']")

.attr("selected", "selected");
}

}

function buildControl(name, options) {

function buildOptions(options) {
var template = "<option>{value}</option>";
return options.reduce(function (memo, option) {

return memo + template.replace("{value}", option);
}, "")

}

console.log(options);

if (!options.length) {
console.log(options);

}

var template = "<label>{label}</label><select>{options}</select>
",
content = template.replace("{label}", name)

.replace("{options}", buildOptions(options));

var $control = $(content);

Cloud Software Group, Inc. 81

JasperReports IO Professional User Guide

$control.insertBefore($("#reportContainer"));
return $control;

}
});

As shown in the following HTML, the control for the chart type is created dynamically by the JavaScript:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>
<!--Provide a container for the report -->
<div id="reportContainer"></div>

10.4 Changing the Chart Properties
Those chart components that are based on Highcharts have a lot of interactivity such as built-in zooming and
animation. The built-in zooming lets users select data, for example columns in a chart, but it can also interfere with
touch interfaces. With the JasperReports IO JavaScript API, you have full control over these features and you can
choose to allow your users access to them or not. For example, animation can be slow on mobile devices, so you
could turn off both zooming and animation. Alternatively, if your users have a range of mobile devices, tablets, and
desktop computers, then you could give users the choice of turning on or off these properties themselves.

The following example creates buttons to toggle several chart properties and demonstrates how to control them
programmatically. First the HTML to create the buttons:

<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<button id="disableAnimation">disable animation</button>
<button id="enableAnimation">enable animation</button>
<button id="resetAnimation">reset animation to initial state</button>

<button id="disableZoom">disable zoom</button>
<button id="zoomX">set zoom to 'x' type</button>
<button id="zoomY">set zoom to 'y' type</button>
<button id="zoomXY">set zoom to 'xy' type</button>
<button id="resetZoom">reset zoom to initial state</button>

<div id="reportContainer"></div>

Here are the API calls to set the various chart properties:

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
resource: "/samples/reports/highcharts/HighchartsChart",
container: "#reportContainer",
error: function(e) {

82 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

alert(e);
}

});
function changeChartProperty(prop, value) {

var chartProps = report.chart();

if (typeof value === "undefined") {
delete chartProps[prop];

} else {
chartProps[prop] = value;

}

report.chart(chartProps).run().fail(function(e) { alert(e); });
}

$("#disableAnimation").on("click", function() {
changeChartProperty("animation", false);

});
$("#enableAnimation").on("click", function() {

changeChartProperty("animation", true);
});

$("#resetAnimation").on("click", function() {
changeChartProperty("animation");

});

$("#disableZoom").on("click", function() {
changeChartProperty("zoom", false);

});

$("#zoomX").on("click", function() {
changeChartProperty("zoom", "x");

});

$("#zoomY").on("click", function() {
changeChartProperty("zoom", "y");

});

$("#zoomXY").on("click", function() {
changeChartProperty("zoom", "xy");

});

$("#resetZoom").on("click", function() {
changeChartProperty("zoom");

});
});

10.5 Undo and Redo Actions
The JIVE UI supports undo and redo actions that you can access programmatically with the JasperReports IO
JavaScript API. As in many applications, undo and redo actions act like a stack, and the canUndo and canRedo
events notify your page you are at either end of the stack.

Cloud Software Group, Inc. 83

JasperReports IO Professional User Guide

jrio.config({
...

});
jrio(function(jrioClient) {

var chartComponent,
report = jrioClient.report({

resource: "/samples/reports/highcharts/HighchartsChart",
container: "#reportContainer",
events: {

canUndo: function(canUndo) {
if (canUndo) {

$("#undo, #undoAll").removeAttr("disabled");
} else {

$("#undo, #undoAll").attr("disabled", "disabled");
}

},
canRedo: function(canRedo) {

if (canRedo) {
$("#redo").removeAttr("disabled");

} else {
$("#redo").attr("disabled", "disabled");

}
}

},
success: function(data) {

chartComponent = data.components.pop();
$("option[value='" + chartComponent.chartType + "']").attr("selected", "selec-

ted");
}

});
var chartTypeSelect = buildChartTypeSelect(jrioClient.report);
chartTypeSelect.on("change", function() {

report.updateComponent(chartComponent.id, {
chartType: $(this).val()

})
.done(function(component) {
chartComponent = component;
console.log("ttttt:" + $(this).val());

})
.fail(function(error) {
console.log(error);
alert(error);

});
});

$("#undo").on("click", function() {
report.undo().fail(function(err) {

alert(err);
});

});

$("#redo").on("click", function() {
report.redo().fail(function(err) {

alert(err);
});

84 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

});

$("#undoAll").on("click", function () {
report.undoAll().fail(function (err) {

alert(err);
});

});
});
function buildChartTypeSelect(report) {

chartTypeSelect = $("#chartType");
var chartTypes = report.chart.types;
chartTypeSelect = $("#chartType");
$.each(chartTypes, function (index, type) {

chartTypeSelect.append("<option value=\"" + type + "\">" + type + "</option>");
});
return chartTypeSelect;

}

Associated HTML:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<select id="chartType"></select>
<button id="undo" disabled="disabled">Undo</button>
<button id="redo" disabled="disabled">Redo</button>
<button id="undoAll" disabled="disabled">Undo All</button>
<!-- Provide a container for the report -->
<div id="reportContainer"></div>

10.6 Sorting Table Columns
This code example shows how to set the three possible sorting orders on a column in the JIVE UI: ascending,
descending, and no sorting.

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
resource:"/samples/reports/TableReport",
container: "#reportContainer",
error: showError

});

$("#sortAsc").on("click", function () {
report.updateComponent("name", {

sort: {
order: "asc"

}
})
.fail(showError);

Cloud Software Group, Inc. 85

JasperReports IO Professional User Guide

});

$("#sortDesc").on("click", function () {
report.updateComponent("name", {

sort: {
order: "desc"

}
})
.fail(showError);

});

$("#sortNone").on("click", function () {
report.updateComponent("name", {

sort: {}
}).fail(showError);

});

function showError(err) {
alert(err);

}
});

Associated HTML:

<script src="http://code.jquery.com/jquery-2.1.0.js"></script>
<script src="http://underscorejs.org/underscore-min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<button id="sortAsc">Sort NAME column ASCENDING</button>
<button id="sortDesc">Sort NAME column DESCENDING</button>
<button id="sortNone">Reset NAME column</button>

<!-- Provide a container for the report -->
<div id="reportContainer"></div>

10.7 Filtering Table Columns
This code example shows how to define filters on columns of various data types (dates, strings, numeric) in the
JIVE UI. It also shows several filter operator such as equal, greater, between, contain (for string matching),
and before (for times and dates).

jrio.config({
...

});
jrio(function(jrioClient) {

var report = jrioClient.report({
resource:"/samples/reports/OrdersTable",
container: "#reportContainer",
error: function(err) {

alert(err);

86 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

}
});

$("#setTimestampRange").on("click", function() {
report.updateComponent("ORDERDATE", {

filter: {
operator: "between",
value: [$("#betweenDates1").val(), $("#betweenDates2").val()]

}
}).fail(handleError);

});
$("#resetTimestampFilter").on("click", function() {

report.updateComponent("ORDERDATE", {
filter: {}

}).fail(handleError);
});

$("#setStringContains").on("click", function() {
report.updateComponent("SHIPNAME", {

filter: {
operator: "contain",
value: $("#stringContains").val()

}
}).fail(handleError);

});

$("#resetString").on("click", function() {
report.updateComponent("SHIPNAME", {

filter: {}
}).fail(handleError);

});

$("#setNumericGreater").on("click", function() {
report.updateComponent("ORDERID", {

filter: {
operator: "greater",
value: parseFloat($("#numericGreater").val(), 10)

}
}).fail(handleError);

});

$("#resetNumeric").on("click", function() {
report.updateComponent("ORDERID", {

filter: {}
}).fail(handleError);

});
});

function handleError(err) {
console.log(err);
alert(err);

}

Associated HTML:

<script src="http://code.jquery.com/jquery-2.1.0.js"></script>

Cloud Software Group, Inc. 87

JasperReports IO Professional User Guide

<script src="http://underscorejs.org/underscore-min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<input type="text" value="1997-01-10T00:00:00" id="betweenDates1"/> -
<input type="text" id="betweenDates2" value="1997-10-24T00:00:00"/>
<button id="setTimestampRange">Set timestamp range</button>
<button id="resetTimestampFilter">Reset timestamp filter</button>

<input type="text" value="ctu" id="stringContains"/>
<button id="setStringContains">Set string column contains</button>
<button id="resetString">Reset string filter</button>

<input type="text" value="10500" id="numericGreater"/>
<button id="setNumericGreater">Set numeric column greater than</button>
<button id="resetNumeric">Reset numeric filter</button>

<!-- Provide a container for the report -->
<div id="reportContainer"></div>

10.8 Formatting Table Columns
The JIVE UI allows you to format columns by setting the alignment, color, font, size, and background of text in
both headings and cells. You can also set the numeric format of cells, such as the precision, negative indicator, and
currency.

jrio.config({
...

});
jrio(function(jrioClient) {
var columns,
report = jrioClient.report({

resource: "/samples/reports/TableReport",
container: "#reportContainer",
events: {
reportCompleted: function(status, error) {
if (status === "ready") {
columns = _.filter(report.data().components, function(component) {
return component.componentType == "tableColumn";

});
var column4 = columns[4];
$("#label").val(column4.label);
$("#headingFormatAlign").val(column4.headingFormat.align);
$("#headingFormatBgColor").val(column4.headingFormat.backgroundColor);
$("#headingFormatFontSize").val(column4.headingFormat.font.size);
$("#headingFormatFontColor").val(column4.headingFormat.font.color);
$("#headingFormatFontName").val(column4.headingFormat.font.name);

if (column4.headingFormat.font.bold) {
$("#headingFormatFontBold").attr("checked", "checked");

} else {
$("#headingFormatFontBold").removeAttr("checked");

88 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

}
if (column4.headingFormat.font.italic) {
$("#headingFormatFontItalic").attr("checked", "checked");

} else {
$("#headingFormatFontItalic").removeAttr("checked");

}
if (column4.headingFormat.font.underline) {
$("#headingFormatFontUnderline").attr("checked", "checked");

} else {
$("#headingFormatFontUnderline").removeAttr("checked");

}
$("#detailsRowFormatAlign").val(column4.detailsRowFormat.align);
$("#detailsRowFormatBgColor").val(column4.detailsRowFormat.backgroundColor);
$("#detailsRowFormatFontSize").val(column4.detailsRowFormat.font.size);
$("#detailsRowFormatFontColor").val(column4.detailsRowFormat.font.color);
$("#detailsRowFormatFontName").val(column4.detailsRowFormat.font.name);
if (column4.detailsRowFormat.font.bold) {
$("#detailsRowFormatFontBold").attr("checked", "checked");

} else {
$("#detailsRowFormatFontBold").removeAttr("checked");

}
if (column4.detailsRowFormat.font.italic) {
$("#detailsRowFormatFontItalic").attr("checked", "checked");

} else {
$("#detailsRowFormatFontItalic").removeAttr("checked");

}
if (column4.detailsRowFormat.font.underline) {
$("#detailsRowFormatFontUnderline").attr("checked", "checked");

} else {
$("#detailsRowFormatFontUnderline").removeAttr("checked");

}
}

}
},
error: function(err) {
alert(err);

}
});
$("#changeHeadingFormat").on("click", function() {
report.updateComponent(columns[4].id, {

headingFormat: {
align: $("#headingFormatAlign").val(),
backgroundColor: $("#headingFormatBgColor").val(),
font: {
size: parseFloat($("#headingFormatFontSize").val()),
color: $("#headingFormatFontColor").val(),
underline: $("#headingFormatFontUnderline").is(":checked"),
bold: $("#headingFormatFontBold").is(":checked"),
italic: $("#headingFormatFontItalic").is(":checked"),
name: $("#headingFormatFontName").val()

}
}

}).fail(function(e) {
alert(e);

});

Cloud Software Group, Inc. 89

JasperReports IO Professional User Guide

});

$("#changeDetailsRowFormat").on("click", function() {
report.updateComponent(columns[4].id, {

detailsRowFormat: {
align: $("#detailsRowFormatAlign").val(),
backgroundColor: $("#detailsRowFormatBgColor").val(),
font: {
size: parseFloat($("#detailsRowFormatFontSize").val()),
color: $("#detailsRowFormatFontColor").val(),
underline: $("#detailsRowFormatFontUnderline").is(":checked"),
bold: $("#detailsRowFormatFontBold").is(":checked"),
italic: $("#detailsRowFormatFontItalic").is(":checked"),
name: $("#detailsRowFormatFontName").val()

}
}

}).fail(function(e) {
alert(e);

});
});

$("#changeLabel").on("click", function() {
report.updateComponent(columns[4].id, {

label: $("#label").val()
}).fail(function(e) {

alert(e);
});

});
});

The associated HTML has static controls for selecting all the formatting options that the script above can modify in
the report.

<script src="http://code.jquery.com/jquery-2.1.0.js"></script>
<script src="http://underscorejs.org/underscore-min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<div >
<h3>Heading format for 5th column</h3>
Align: <select id="headingFormatAlign">

<option value="left">left</option>
<option value="center">center</option>
<option value="right">right</option></select>

Background color: <input type="text" id="headingFormatBgColor" value=""/>

Font size: <input type="text" id="headingFormatFontSize" value=""/>

Font color: <input type="text" id="headingFormatFontColor" value=""/>

Font name: <input type="text" id="headingFormatFontName" value=""/>

Bold: <input type="checkbox" id="headingFormatFontBold" value="true"/>

90 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

Italic: <input type="checkbox" id="headingFormatFontItalic" value="true"/>

Underline: <input type="checkbox" id="headingFormatFontUnderline" value="true"/>

<button id="changeHeadingFormat">Change heading format</button>

</div>
<div >

<h3>Details row format for 5th column</h3>
Align: <select id="detailsRowFormatAlign">

<option value="left">left</option>
<option value="center">center</option>
<option value="right">right</option></select>

Background color: <input type="text" id="detailsRowFormatBgColor" value=""/>

Font size: <input type="text" id="detailsRowFormatFontSize" value=""/>

Font color: <input type="text" id="detailsRowFormatFontColor" value=""/>

Font name: <input type="text" id="detailsRowFormatFontName" value=""/>

Bold: <input type="checkbox" id="detailsRowFormatFontBold" value="true"/>

Italic: <input type="checkbox" id="detailsRowFormatFontItalic" value="true"/>

Underline: <input type="checkbox" id="detailsRowFormatFontUnderline" value="true"/>

<button id="changeDetailsRowFormat">Change details row format</button>

</div>
<div >

<h3>Change label of 5th column</h3>

Label <input type="text" id="label"/>

<button id="changeLabel">Change label</button>

</div>
<div ></div>

<!-- Provide a container for the report -->
<div id="reportContainer"></div>

10.9 Conditional Formatting on Table Columns
The JIVE UI also supports conditional formatting so that you can change the appearance of a cell's contents based
on its value. This example highlights cells in a given column that have a certain value by changing their text color
and the cell background color. Note that the column name must be known ahead of time, for example by looking at
your JRXML.

jrio.config({
...

});

Cloud Software Group, Inc. 91

JasperReports IO Professional User Guide

jrio(function(jrioClient) {
// column name from JRXML (field name by default)
var report = jrioClient.report({

resource: "/samples/reports/OrdersTable",
container: "#reportContainer",
error: showError

});

$("#changeConditions").on("click", function() {
report.updateComponent("ORDERID", {

conditions: [
{

operator: "greater",
value: 10500,
backgroundColor: null,
font: {

color: "FF0000",
bold: true,
underline: true,
italic: true

}
},
{

operator: "between",
value: [10900, 11000],
backgroundColor: "00FF00",
font: {

color: "0000FF"
}

}
]

})
.then(printConditions)
.fail(showError);

});

function printConditions(component){
console.log("Conditions: "+ component.conditions);

}

function showError(err) {
alert(err);

}
});

This example has a single button that allows the user to apply the conditional formatting when the report is loaded:

<script src="http://code.jquery.com/jquery-2.1.0.js"></script>
<script src="http://underscorejs.org/underscore-min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<button id="changeConditions">Change conditions for numeric column</button>

<!-- Provide a container for the report -->
<div id="reportContainer"></div>

92 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

10.10 Sorting Crosstab Columns
Crosstabs are more complex and do not have as many formatting options. This example shows how to sort the
values in a given column of a crosstab (the rows are rearranged). Note that the code is slightly different than
“Sorting Table Columns” on page 85.

jrio.config({
...

});
jrio(function(jrioClient) {

var column2,
report = jrioClient.report({

resource: "/samples/reports/crosstabs/OrdersReport",
container: "#reportContainer",
events: {

reportCompleted: function(status, error) {
if (status === "ready") {

var columns = _.filter(report.data().components, function(component) {
return component.componentType == "crosstabDataColumn";

});

column2 = columns[1];
console.log(columns);

}
}

},
error: function(err) {

alert(err);
}

});

$("#sortAsc").on("click", function () {
report.updateComponent(column2.id, {

sort: {
order: "asc"

}
}).fail(function(e) {

alert(e);
});

});

$("#sortDesc").on("click", function() {
report.updateComponent(column2.id, {

sort: {
order: "desc"

}
}).fail(function(e) {

alert(e);
});

});

$("#sortNone").on("click", function() {
report.updateComponent(column2.id, {

sort: {}
}).fail(function(e) {

alert(e);
});

});
});

Cloud Software Group, Inc. 93

JasperReports IO Professional User Guide

The associated HTML has the buttons to trigger the sorting:

<script src="http://code.jquery.com/jquery-2.1.0.js"></script>
<script src="http://underscorejs.org/underscore-min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<button id="sortAsc">Sort 2nd column ascending</button>
<button id="sortDesc">Sort 2nd column descending</button>
<button id="sortNone">Do not sort on 2nd column</button>

<!-- Provide a container for the report -->
<div id="reportContainer"></div>

10.11 Sorting Crosstab Rows
This example shows how to sort the values in a given row of a crosstab (the columns are rearranged).

jrio.config({
...

});
jrio(function(jrioClient) {

var row,
report = jrioClient.report({

resource: "/samples/reports/crosstabs/OrdersReport",
container: "#reportContainer",
events: {

reportCompleted: function(status, error) {
if (status === "ready") {

row = _.filter(report.data().components, function(component) {
return component.componentType == "crosstabRowGroup";

})[0];
}

}
},
error: function(err) {

alert(err);
}

});

$("#sortAsc").on("click", function() {
report.updateComponent(row.id, {

sort: {
order: "asc"

}
}).fail(function(e) {

alert(e);
});

});

$("#sortDesc").on("click", function() {
report.updateComponent(row.id, {

sort: {
order: "desc"

}

94 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

}).fail(function (e) {
alert(e);

});
});

$("#sortNone").on("click", function () {
report.updateComponent(row.id, {

sort: {}
}).fail(function(e) {

alert(e);
});

});
});

The associated HTML has the buttons to trigger the sorting:

<script src="http://code.jquery.com/jquery-2.1.0.js"></script>
<script src="http://underscorejs.org/underscore-min.js"></script>
<!-- Provide the URL to jrio.js -->
<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>

<button id="sortAsc">Sort rows ascending</button>
<button id="sortDesc">Sort rows descending</button>
<button id="sortNone">Do not sort rows</button>

<!-- Provide a container for the report -->
<div id="reportContainer"></div>

10.12 Implementing Search in Reports
The JIVE UI supports a search capability within the report. The following example relies on a page with a simple
search input.

<input id="search-query" type="input" />
<button id="search-button">Search</button>
<!--Provide container to render your visualization-->
<div id="reportContainer"></div>

Then you can use the search function to return a list of matches in the report. In this example, the search button
triggers the function and passes the search item. It uses the console to display the results, but you can use them to
locate the search term in a paginated report.

jrio.config({
...

});
jrio(function(jrioClient) {

//render report from provided resource
var report = jrioClient.report({

resource: "/samples/reports/TableReport",
error: handleError,
container: "#reportContainer"

Cloud Software Group, Inc. 95

JasperReports IO Professional User Guide

});

$("#search-button").click(function(){
report
.search($("#search-query").val())

.done(function(results){
!results.length && console.log("The search did not return any results!");
for (var i = 0; i < results.length; i++) {

console.log("found " + results[i].hitCount + " results on page: #" +
results[i].page);

}
})
.fail(handleError);

});

//show error
function handleError(err){

alert(err.message);
}

});

The search function supports several arguments to refine the search:

$("#search-button").click(function(){
report
.search({

text: $("#search-query").val(),
caseSensitive: true,
wholeWordsOnly: true

})
...

10.13 Providing Bookmarks in Reports
The JIVE UI also supports bookmarks that are embedded within the report. You must create your report with
bookmarks, but then the JasperReports IO JavaScript API can make them available on your page. The following
example has a container for the bookmarks and one for the report:

<div>
<h4>Bookmarks</h4>
<div id="bookmarksContainer"></div>

</div>
<!--Provide container to render your visualization-->
<div id="reportContainer"></div>

Then you need a function to read the bookmarks in the report and place them in the container. A handler then
responds to clicks on the bookmarks.

jrio.config({

96 Cloud Software Group, Inc.

Chapter 10 JavaScript API Usage - Interactive Reports

...
});
jrio(function(jrioClient) {

//render report from provided resource
var report = jrioClient.report({

resource: "/samples/reports/TableReport",
error: handleError,
container: "#reportContainer",
events: {

bookmarksReady: handleBookmarks
}

});

//show error
function handleError(err){

alert(err.message);
}

$("#bookmarksContainer").on("click", ".jr_bookmark", function(evt) {
report.pages({

anchor: $(this).data("anchor")
}).run();

});

// handle bookmarks
function handleBookmarks(bookmarks, container) {

var li, ul = $("");
!container && $("#bookmarksContainer").empty();
container = container || $("#bookmarksContainer");

$.each(bookmarks, function(i, bookmark) {
li = $("<span class='jr_bookmark' title='Anchor: " + bookmark.anchor + ", page:

" + bookmark.page + "' data-anchor='" + bookmark.anchor + "' data-page='" + bookmark.page +
"'>" + bookmark.anchor + "");

bookmark.bookmarks && handleBookmarks(bookmark.bookmarks, li);
ul.append(li);

});

container.append(ul);
}

});

10.14 Disabling the JIVE UI
The JIVE UI is enabled by default on all reports that support it. When the JIVE UI is disabled, the report is static
and neither users nor your script can interact with the report elements. You can disable it in your jrioClient.report
call as shown in the following example:

jrio.config({
...

});
jrio(function(jrioClient) {

jrioClient.report({
resource: "/samples/reports/TableReport",
container: "#reportContainer",

Cloud Software Group, Inc. 97

JasperReports IO Professional User Guide

defaultJiveUi: { enabled: false },
error: function (err) {

alert(err.message);
}

});
});

Associated HTML:

<script src="http://bi.example.com:8080/jriojsapi/client/jrio.js"></script>
<p>JIVE UI is disabled on this report:</p>
<div id="reportContainer">Loading...</div>

98 Cloud Software Group, Inc.

A

a element (hyperlink) 71
alignment of cells 88
Amazon Web Services

CloudFormation template 10
customizations 20
installation 9
instance types 10
prerequisites 9
security 20
terms of use 9

anchor element 71

B

beforeRender event 68, 72

C

cancel 46
canceling reports 60
canRedo event 83
canUndo event 83
cell

alignment 88
background color 88, 91
font 88
text color 88, 91

changeTotalPages event 67
chart type 80
click event 72
components 49

conditional formatting 91
container 37
container.not.found.error 64
CSV export 58

D

data adapters 16
defaultJiveUi 43, 64
destroy 49
directories

JasperReports IO 13
repository 16
web application 14

displaying multiple reports 52
displaying reports 50
Document Object Model 68
DOM 64

modifying 68
download location 8
drill-down 73
drill-down links 73

E

errors 63
event

beforeRender 68, 72
canRedo 83
canUndo 83
changeTotalPages 67
click 72
reportCompleted 67, 88

INDEX

Cloud Software Group, Inc. 99

JasperReports IO Professional User Guide

events 46, 67
Excel export 56
export 49

error 64
export.pages.out.range 64
exporting reports 57

F

filtering table columns 86
font 88
font size 88
formatting table columns 88

H

href 49
hyperlink

accessing data 74
drill-down 73
modifying 71

I

installation
AWS 9
standalone 8

isolateDom 43, 64

J

JIVE UI
conditional formatting 91
disabling 97
filtering tables 86
formatting tables 88
redo 83
sorting crosstabs 93-94
sorting tables 85
undo 83

JIVE UI (interactivity) 77
jrio.js

loading 37
parameters 38

JRXML 74
jsFiddle 40
JSON export 59

L

licence.expired 64

licence.not.found 64
license restrictions 7
linkOptions 43, 72
links 49
linkType

Reference 49
ReportExecution 49

M

modifying chart type 80

N

net.sf.jasperreports.components.name 78
next page 54, 56

P

pages 43, 54-56
pagination

controls 54, 56
error 64
events 67
setting pages 54

parameters 49, 51
params 43
prerequisites

AWS 9
previous page 54, 56

R

range (pagination) 55
redo 49, 83
refreshing reports 59
render 46
report 73

bookmarks 54
canceling 60
conditional formatting 91
data export 58
events 67
Excel 56
exporting 57
filtering tables 86
formatting tables 88
handling errors 64
hyperlinks 71
interactivity 77

100 Cloud Software Group, Inc.

Index

JIVE 77
multiple 52
overview 17
paginated 54, 56
refresh 59
rendering 50
resizing 53
S3 bucket 19
scaling 53
setting pages 54
setting parameters 51
sorting crosstabs 93-94
sorting tables 85

report properties 43
report structure 49
report.execution.cancelled 64
report.execution.failed 64
report.export.failed 64
reportCompleted event 67
repository

error 64
overview 16
S3 bucket folder 11
web application server configuration 17

resize 49
resource 43
resource.not.found 64
run 46

S

S3 bucket
creating a repository folder 11
invalid bucket 11

schema.validation.error 64
search 49
security

AWS and VPC 20
overview 22

sorting crosstab columns 93
sorting crosstab rows 94
sorting table columns 85

T

text color 88, 91
tooltip 49
totalPages 49

U

undo 49, 83
undoAll 49, 77
unexpected.error 64
unsupported.configuration.error 64
updateComponent 46, 77-78
usage pattern 39

W

web application server
configuration 15
overview 14

web server 39

Cloud Software Group, Inc. 101

JasperReports IO Professional User Guide

102 Cloud Software Group, Inc.

	Chapter 1 Introduction to JasperReports IO Professional Edition
	1.1 JasperReports IO Professional Edition License Usage and Restrictions
	1.2 Installing JasperReports IO Using the Standalone Package
	1.2.1 System Requirements
	1.2.2 Starting JasperReports IO

	1.3 Installing JasperReports IO For Amazon Web Services
	1.3.1 Prerequisites
	1.3.2 Required Permissions
	1.3.3 Accepting Terms of Use
	1.3.4 Supported Instance Types
	1.3.5 Creating a JasperReports IO Instance from a CloudFormation Template
	1.3.6 Creating a Repository Folder in Your S3 Bucket
	1.3.7 Correcting an Invalid S3 Bucket

	Chapter 2 Managing JasperReports IO
	2.1 JasperReports IO Directories
	2.2 JasperReports IO Reporting Service and Web Application Directories
	2.3 Web Application Server
	2.3.1 Configuring the Web Application Server
	2.3.2 Web Application

	2.4 JasperReports IO Repository
	2.4.1 Repository Directory Structure
	2.4.2 Data Sources and Data Adapters
	2.4.3 Reports

	2.5 Managing Amazon Web Services for JasperReports IO
	2.5.1 AWS S3 Bucket Repository
	2.5.2 Referring to Reports in the AWS S3 Bucket Repository
	2.5.3 JasperReports IO for AWS and VPC Security
	2.5.4 Customizations for JasperReports IO for AWS

	2.6 Cloud Repositories for JasperReports IO
	2.6.1 OAuth2 Repositories
	2.6.2 Accessing Cloud Repositories

	2.7 Security

	Chapter 3 REST API Reference - The reports Service
	3.1 Running a Report

	Chapter 4 REST API Reference - The reportExecutions Service
	4.1 Running a Report Asynchronously
	4.2 Polling Report Execution
	4.3 Requesting Page Status
	4.4 Requesting Report Execution Details
	4.5 Requesting Report Output
	4.6 Requesting Report Bookmarks
	4.7 Exporting a Report Asynchronously
	4.8 Modifying Report Parameters
	4.9 Polling Export Execution
	4.10 Stopping Running Reports
	4.11 Removing a Report Execution

	Chapter 5 JavaScript API Reference - jrio.js
	5.1 Loading the jrio.js Script
	5.2 Configuring the JasperReports IO Client
	5.3 Usage Patterns
	5.4 Testing Your JavaScript
	5.5 Changing the Look and Feel
	5.5.1 Customizing the UI with CSS
	5.5.2 Customizing the UI with Themes

	Chapter 6 JavaScript API Reference - report
	6.1 Report Properties
	6.2 Report Functions
	6.3 Report Structure
	6.4 Rendering a Report
	6.5 Setting Report Parameters
	6.6 Rendering Multiple Reports
	6.7 Resizing a Report
	6.8 Setting Report Pagination
	6.9 Creating Pagination Controls (Next/Previous)
	6.10 Creating Pagination Controls (Range)
	6.11 Exporting From a Report
	6.12 Exporting Data From a Report
	6.13 Refreshing a Report
	6.14 Canceling Report Execution

	Chapter 7 JavaScript API Reference - Errors
	7.1 Error Properties
	7.2 Common Errors
	7.3 Catching Report Errors

	Chapter 8 JavaScript API Usage - Report Events
	8.1 Tracking Completion Status
	8.2 Listening for Page Totals
	8.3 Customizing a Report's DOM Before Rendering

	Chapter 9 JavaScript API Usage - Hyperlinks
	9.1 Structure of Hyperlinks
	9.2 Customizing Links
	9.3 Drill-Down in Separate Containers
	9.4 Accessing Data in Links

	Chapter 10 JavaScript API Usage - Interactive Reports
	10.1 Interacting With JIVE UI Components
	10.2 Using Floating Headers
	10.3 Changing the Chart Type
	10.4 Changing the Chart Properties
	10.5 Undo and Redo Actions
	10.6 Sorting Table Columns
	10.7 Filtering Table Columns
	10.8 Formatting Table Columns
	10.9 Conditional Formatting on Table Columns
	10.10 Sorting Crosstab Columns
	10.11 Sorting Crosstab Rows
	10.12 Implementing Search in Reports
	10.13 Providing Bookmarks in Reports
	10.14 Disabling the JIVE UI

	Index

