
JASPERREPORTS SERVER

WEB SERVICES GUIDE
RELEASE 5.6

http://www.jaspersoft.com

http://www.jaspersoft.com/

Copyright © 2014 Jaspersoft Corporation. All rights reserved. Printed in the U.S.A. Jaspersoft, the Jaspersoft
logo, Jaspersoft iReport Designer, JasperReports Library, JasperReports Server, Jaspersoft OLAP, Jaspersoft
Studio, and Jaspersoft ETL are trademarks and/or registered trademarks of Jaspersoft Corporation in the United
States and in jurisdictions throughout the world. All other company and product names are or may be trade
names or trademarks of their respective owners.

This is version 0514-JSP56-22 of the JasperReports Server Web Services Guide.

TABLE OF CONTENTS

Chapter 1 Introduction to Web Services 9
1.1 RESTWeb Services Overview 10
1.2 REST Authentication 12
1.2.1 Login Encryption 13
1.2.2 Login Service 14

1.3 REST Server Information 15
1.4 SOAPWeb Services Overview 16
1.5 SOAP Authentication 17
1.6 Syntax of resourceDescriptor 18
1.6.1 Overview 18
1.6.2 wsType Attribute 19
1.6.3 isNew Attribute 20
1.6.4 Resource Descriptor Parameters 20
1.6.5 Examples of resourceDescriptor 20

Chapter 2 REST v2 - Repository Services 23
2.1 The v2/resources Service 23
2.1.1 V2 Resource Descriptors 23
2.1.2 V2 Resource Descriptor Types 28
2.1.3 Searching the Repository 40
2.1.4 Paginating Search Results 41
2.1.5 Viewing Resource Details 44
2.1.6 Downloading File Resources 45
2.1.7 Creating a Resource 46
2.1.8 Modifying a Resource 48
2.1.9 Copying a Resource 50
2.1.10 Moving a Resource 50
2.1.11 Uploading File Resources 51
2.1.12 Deleting Resources 53

2.2 The v2/domains/metadata Service 54
2.2.1 Working with Domain Schemas 58
2.2.2 Accessing Domain Bundles and Security Files 59

2.3 The v2/permissions Service 60

3

JasperReports Server Web Services Guide

2.3.1 ViewingMultiple Permissions 60
2.3.2 Viewing a Single Permission 61
2.3.3 SettingMultiple Permissions 62
2.3.4 Setting a Single Permission 63
2.3.5 Deleting Permissions in Bulk 64
2.3.6 Deleting a Single Permission 64

2.4 The v2/export Service 65
2.4.1 Checking the Export State 66
2.4.2 Fetching the Export Output 67

2.5 The v2/import Service 67

Chapter 3 REST v2 - Report Services 69
3.1 The v2/reports Service 69
3.1.1 Running a Report 69
3.1.2 Finding Running Reports 70
3.1.3 Terminate Running Report 71

3.2 The v2/reportExecutions Service 72
3.2.1 Running a Report Asynchronously 72
3.2.2 Polling Report Execution 75
3.2.3 Requesting Report Execution Details 76
3.2.4 Requesting Report Output 77
3.2.5 Exporting a Report Asynchronously 78
3.2.6 Modifying Report Parameters 79
3.2.7 Polling Export Execution 80
3.2.8 Finding Running Reports and Jobs 81
3.2.9 Stopping Running Reports and Jobs 83

3.3 The v2/inputControls Service 83
3.3.1 Listing Input Control Structure 83
3.3.2 Listing Input Control Values 85
3.3.3 Setting Input Control Values 86

3.4 The v2/options Service 87
3.4.1 Listing Report Options 87
3.4.2 Creating Report Options 88
3.4.3 Updating Report Options 89
3.4.4 Deleting Report Options 89

3.5 The v2/jobs Service 90
3.5.1 Listing Report Jobs 90
3.5.2 Viewing a Job Definition 90
3.5.3 Extended Job Search 93
3.5.4 Scheduling a Report 94
3.5.5 Viewing Job Status 95
3.5.6 Editing a Job Definition 95
3.5.7 Updating Jobs in Bulk 95
3.5.8 Pausing Jobs 96
3.5.9 Resuming Jobs 97
3.5.10 Restarting Failed Jobs 97

4

3.5.11 Specifying FTP Output 98
3.5.12 Calendar Exclusion for the Scheduler 99

3.6 The v2/queryExecutor Service 103
3.7 The v2/caches Service 106

Chapter 4 REST v2 - Administration Services 107
4.1 The v2/organizations Service 107
4.1.1 Searching for Organizations 107
4.1.2 Viewing anOrganization 109
4.1.3 Creating anOrganization 109
4.1.4 Modifying Organization Properties 111
4.1.5 Setting the Theme of anOrganization 111
4.1.6 Deleting anOrganization 112

4.2 The v2/users Service 112
4.2.1 Searching for Users 112
4.2.2 Viewing a User 114
4.2.3 Creating a User 115
4.2.4 Modifying User Properties 116
4.2.5 Deleting a User 117

4.3 The v2/attributes Service 118
4.3.1 Viewing User Attributes 118
4.3.2 Setting User Attributes 120
4.3.3 Deleting User Attributes 121

4.4 The v2/roles Service 122
4.4.1 Searching for Roles 123
4.4.2 Viewing a Role 124
4.4.3 Creating a Role 125
4.4.4 Modifying a Role 126
4.4.5 Setting RoleMembership 127
4.4.6 Deleting a Role 127

Chapter 5 REST v1 - Repository Services 129
5.1 The resources Service 129
5.2 The resource Service 131
5.2.1 Requesting the Contents of a JasperReport 133
5.2.2 Requesting the Contents of a File Resource 136
5.2.3 Requesting the Values of a Query-Based Input Control 136
5.2.4 Creating a Resource 138
5.2.5 Setting the Temporary Upload Directory 140
5.2.6 Modifying a Resource 140
5.2.7 Copying or Moving a Resource 141
5.2.8 Deleting a Resource 141

5.3 Working with Dashboards 142
5.4 Working with Virtual Data Sources 145
5.5 Working with Domains 146
5.6 The permission Service 148
5.6.1 Viewing Permissions 148

5

JasperReports Server Web Services Guide

5.6.2 Setting Permissions 150

Chapter 6 REST v1 - Report Services 153
6.1 The report Service 153
6.1.1 Running a Report 154
6.1.2 Downloading Report Output 155
6.1.3 Regenerating Report Output 156

6.2 The jobsummary Service 156
6.3 The job Service 157
6.3.1 Viewing a Job Definition 157
6.3.2 Scheduling a Report 158
6.3.3 Editing a Job Definition 160
6.3.4 Deleting a Job Definition 160

Chapter 7 REST v1 - Administration Services 161
7.1 The organization Service 161
7.1.1 Viewing anOrganization 161
7.1.2 Creating anOrganization 162
7.1.3 Modifying Organization Properties 163
7.1.4 Deleting anOrganization 163

7.2 The user Service 164
7.2.1 Creating a User 165
7.2.2 Editing a User 166
7.2.3 Deleting a User 166

7.3 The attribute Service 166
7.4 The role Service 167
7.4.1 Creating a New Role 168
7.4.2 Editing a Role 168
7.4.3 Deleting a Role 169

Chapter 8 SOAP - Repository Web Service 171
8.1 Request andOperation Result 171
8.2 List Operation 173
8.3 Get Operation 175
8.4 Put Operation 180
8.5 Delete Operation 181
8.6 MoveOperation 182
8.7 Copy Operation 182
8.8 runReport Operation 183
8.8.1 Report Output 184
8.8.2 Report Locales 184

8.9 Errors 185
8.10 Implementation Suggestions 186

Chapter 9 SOAP - Report Scheduling Web Service 189
9.1 Types Defined in theWSDL 189
9.2 Operations in the Scheduling Service 192
9.2.1 Operation Descriptions 192

6

9.2.2 Example Request andOperation Result 193
9.3 Java Client Classes 195

Chapter 10 SOAP - Domain Web Service 197
10.1 Types Defined in theWSDL 197
10.2 Operations in the Domain Service 198
10.2.1 The getDomainMetaData Operation 198
10.2.2 The executeDomainQuery Operation 201
10.2.3 Java Client Classes 203

Chapter 11 SOAP - Web Services for Administration 205
11.1 Types Defined in theWSDL 206
11.2 Users and Roles 208
11.2.1 findUsers 208
11.2.2 putUser 209
11.2.3 deleteUser 209
11.2.4 findRoles 210
11.2.5 putRole 210
11.2.6 updateRoleName 211
11.2.7 deleteRole 211

11.3 Organizations/Tenants 212
11.3.1 getTenant 212
11.3.2 getSubTenantList 212
11.3.3 putTenant 213
11.3.4 deleteTenant 213

11.4 Permissions 213
11.4.1 getPermissionsForObject 214
11.4.2 putPermission 214
11.4.3 deletePermission 215

11.5 Related Files 215

Appendix A ResourceDescriptor API Constants 217

Index 219

7

JasperReports Server Web Services Guide

8

CHAPTER 1 INTRODUCTION TO WEB SERVICES

JasperReports Server is a component of both a community project and commercial offerings. Each
integrates the standard features such as security, scheduling, a web services interface, and much more
for running and sharing reports. This guide discusses all editions. Sections of the guide that apply only to
the commercial editions are indicated with a special note.

This document describes the JasperReports Server’s web services that allow client applications to interact with
the server programmatically.

There are three different Application Programming Interfaces (APIs) using two different protocols:
• REST (REpresentational State Transfer) – A RESTful interface depends on the standard methods provided

by HTTP: GET, PUT, POST, and DELETE. The API sends and receives resource descriptors that are the
object or result of the operation.
• REST v2 – Jaspersoft has fully re-implemented the original REST API to improve performance and use

simpler resource descriptors in JSON (JavaScript Object Notation). Jaspersoft strongly recommends
using or upgrading to the REST v2 API for support of the latest features in JasperReports Server.

• REST (v1) – The original REST API supports only XML descriptors, and it is not as efficient or simple
to use. This interface is deprecated: it is still supported but is not enhanced with new features. The
REST (v1) API may be unsupported and later removed in future versions of the server.

• SOAP (Simple Object Access Protocol) – The SOAP interface sends and receives XML documents to
describe operations, process requests and provide results. The SOAP interface is no longer supported nor
maintained, but it is still included in JasperReports Server for backwards compatibility. The SOAP API may
be removed in future versions of the server.

In order to describe the contents of resources in the repository, both REST and SOAP web services use a custom
XML format called a resourceDescriptor. When the client requests information about resources, the server
responds with lists of resource descriptors, and when the client creates or modifies a resource, it must send a
well-formed resourceDescriptor that describes the resource. Newer RESTful APIs also support JSON
(JavaScript Object Notation) objects.

This chapter contains the following sections:
• REST Web Services Overview
• REST Authentication
• REST Server Information
• SOAP Web Services Overview
• SOAP Authentication
• Syntax of resourceDescriptor

9

JasperReports Server Web Services Guide

1.1 REST Web Services Overview
The RESTful interface of JasperReports Server responds to HTTP requests from client applications, in particular
the following methods (sometimes called verbs):
• GET to list, search and acquire information about repository resources.
• POST to create new resources and execute reports.
• PUT to modify resources (note that PUT and POST were reversed in the v1 REST API).
• DELETE to remove resources.

In order to introduce new features and keep backwards compatibility, Jaspersoft has introduced a second
RESTful API using the rest_v2 URL.

By default, the REST web services are available at the following URLs, where <host> is the name of the
computer hosting JasperReports Server and <port> is the port you specified during installation. By default, the
context name is jasperserver for the Community Project and jasperserver-pro for commercial
editions. The context name may also be customized on your specific installation of JasperReports Server.

Web Service URLs

Login (optional) http://<host>:<port>/jasperserver[-pro]/rest/GetEncryptionKey

http://<host>:<port>/jasperserver[-pro]/rest/login

Repository http://<host>:<port>/jasperserver[-pro]/rest_v2/resources

http://<host>:<port>/jasperserver-pro/rest_v2/domains/.../metadata *

http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions

http://<host>:<port>/jasperserver[-pro]/rest_v2/export

http://<host>:<port>/jasperserver[-pro]/rest_v2/import

Reports http://<host>:<port>/jasperserver[-pro]/rest_v2/reports

http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/.../inputControls

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/.../options

http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs

http://<host>:<port>/jasperserver-pro/rest_v2/queryExecutor *

Administration
without
organizations

http://<host>:<port>/jasperserver[-pro]/rest_v2/users

http://<host>:<port>/jasperserver[-pro]/rest_v2/users/.../attributes

http://<host>:<port>/jasperserver[-pro]/rest_v2/roles

Administration
with
organizations *

http://<host>:<port>/jasperserver-pro/rest_v2/organizations

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../users

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../users/.../attributes

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../roles

http://<host>:<port>/jasperserver-pro/rest_v2/serverInfo

* Available only in commercial editions of JasperReports Server.

Table 1-1 REST v2 - Web Services and URLs

10

Chapter 1 Introduction to Web Services

Applications may receive the machine-readable XML description of all supported REST v2 services in Web
Application Desciption Language (WADL) at the following URL:

http://<host>:<port>/jasperserver[-pro]/rest_v2/application.wadl

The original REST (now called v1) API is being deprecated. These services are still supported but no longer
include the latest features of the server.

Web Service URLs

Login (optional) http://<host>:<port>/jasperserver[-pro]/rest/GetEncryptionKey

http://<host>:<port>/jasperserver[-pro]/rest/login

Repository http://<host>:<port>/jasperserver[-pro]/rest/resources

http://<host>:<port>/jasperserver[-pro]/rest/resource

http://<host>:<port>/jasperserver[-pro]/rest/permission

Reports http://<host>:<port>/jasperserver[-pro]/rest/report

http://<host>:<port>/jasperserver[-pro]/rest/jobsummary

http://<host>:<port>/jasperserver[-pro]/rest/job

Administration
without
organizations

http://<host>:<port>/jasperserver[-pro]/rest/user

http://<host>:<port>/jasperserver[-pro]/rest/attribute

http://<host>:<port>/jasperserver[-pro]/rest/role

Administration
with
organizations *

http://<host>:<port>/jasperserver-pro/rest/organization

http://<host>:<port>/jasperserver-pro/rest/user

http://<host>:<port>/jasperserver-pro/rest/attribute

http://<host>:<port>/jasperserver-pro/rest/role

* Available only in commercial editions of JasperReports Server.

Table 1-2 REST v1 - Deprecated Web Services and URLs

As with any RESTful service, not all methods (GET, PUT, POST, and DELETE) are supported on every service.
The URLs usually include a path to the resource being acted upon, as well as any paramters that are accepted
by the method. For example, to search for input control resources in the repository, your application would send
the following HTTP request:

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources?type=inputControl

The reference chapters in this book give the full description of the methods supported by each URL, the path or
resource expected for each method, and the parameters that are required or optional. The description of each
method includes a sample of the return value.

JasperReports Server REST services return standard HTTP status codes. In case of an error, a detailed message
may be present in the body in form of plain text. Client error codes are of type 4xx, while server errors are of
type 5xx. The following table lists all the standard HTTP codes.

11

JasperReports Server Web Services Guide

Success Messages Client Error Server Errors

Code Message Code Message Code Message

100 Continue 400 Bad Request 500 Internal Server Error

101 Switching Protocols 401 Unauthorized 501 Not Implemented

200 OK 402 Payment Required 502 Bad Gateway

201 Created 403 Forbidden 503 Service Unavailable

202 Accepted 404 Not Found 504 Gateway Time-out

203 Non-Authoritative
Information

405 Method Not Allowed 505 HTTP Version Not
Supported

204 No Content 406 Not Acceptable

205 Reset Content 407 Proxy Authentication
Required

206 Partial Content 408 Request Time-out

300 Multiple Choices 409 Conflict

301 Moved Permanently 410 Gone

302 Found 411 Length Required

303 See Other 412 Precondition Failed

304 Not Modified 413 Request Entity Too
Large

305 Use Proxy 414 Request-URI Too Large

307 Temporary Redirect 415 Unsupported Media
Type

416 Requested Range Not
Satisfiable

417 Expectation Failed

Table 1-3 REST - HTTP Return Codes

1.2 REST Authentication
When using web services, the calling application must provide a valid user ID and password to JasperReports
Server. The REST web services in JasperReports Server support two types of authentication:

12

Chapter 1 Introduction to Web Services

• HTTP Basic Authentication, where the user ID and password are sent in the header with every request.
Basic Authentication with REST is the same as described in section 1.5, “SOAP Authentication,” on
page 17.

• The special login service that allows authentication using a POST request to create a session and return a
session ID that is used with subsequent requests. Use of the login service is optional, and it is useful only
when HTTP Basic Authentication does not work.

One example where you may need to use the login service is when the username or password contain UTF-
8 characters that may be corrupted by the basic authentication mechanism.

Normally, RESTful implementations do not rely on the use of persistent sessions, such as the login service.
However, the JasperReports Server architecture automatically creates user sessions internally, and the login
service takes advantage of this. By using the login service, you can avoid making the server verify user
credentials for each API call. If your server is configured with external authentication, repeatedly verifying
credentials may be a performance issue you can avoid with the login service.

1.2.1 Login Encryption
JasperReports Server 4.7 introduced the ability to encrypt plain-text passwords over non-secure HTTP.
Encryption does not make passwords more secure, it only prevents them from being readable to humans. For
more information about security and how to enable login encryption, see the JasperReports Server Administrator
Guide.

When login encryption is enabled, passwords in both HTTP Basic Authentication and using the login service
must be encrypted by the client. Login encryption has two modes:
• Static key encryption – The server only uses one key that never changes. The client only needs to encrypt

the password once and can use it for every web service call.
• Dynamic key encryption – The server changes the encryption key for every session. The client must request

the new key and re-encrypt the password before every call using HTTP Basic Authentication or every
session using the login service.

The GetEncryptionKey service does not take any arguments or content input.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/GetEncryptionKey/

Return Value on Success Typical Return Values on Failure

200 OK – Body contains a JSON representation of
public key:

{
"maxdigits":"131",
"e":"10001",
"n":"9f8a2dc4baa260a5835fa33ef94c..."

}

200 OK – Body contains {Error: Key generation is off}

To encrypt a password with the server’s public key, use the Bouncy Castle provider with the
RSA/NONE/NoPadding algorithm.

13

JasperReports Server Web Services Guide

1.2.2 Login Service
When making a login request, the user ID and password can be pass as URL arguments or as content in the
request body:

Method URL

POST

GET

http://<host>:<port>/jasperserver[-pro]/rest/login/
http://<host>:<port>/jasperserver[-pro]/rest/login?<arguments>

Argument Type/Value Description

j_username Text The user ID. In commercial editions of the server that implement multiple
organizations, the argument must specify the organization ID or alias in the
following format: j_username%7Corganization_id (%7C is the | character).

j_password? Text The user’s password. If the server has login encryption enabled, the
password must be encrypted as explained in section 1.2.1. The argument is
optional but authentication will fail without the password.

Content-Type Content

application/x-www-form-
urlencoded

j_username=<userID>[%7C<organization_id>]&j_password=<password>

Example: j_username=jasperadmin&j_password=jasperadmin

or j_username=jasperadmin%7Corganization_1&j_password=jasperadmin

Return Value on Success Typical Return Values on Failure

200 OK – Session ID in cookie (POST only), empty
body.

401 Unauthorized – Empty body.

302 – License expired or otherwise not valid.

The login service has several uses:
• POST method – Applications should use the POST method, because it returns the session cookie to use in

future requests.
• GET method – Developers can test the login service and the user credentials from a browser, which uses the

GET method.
• Credentials in arguments – When testing the login service in a browser, credentials are passed as arguments

in the URL:

http://<host>:<port>/jasperserver[-pro]/rest/login?j_username=<userID>[%7C<organization_id>]
&j_password=<password>

• Credentials in content – When using the POST method, credentials can either be sent in the URL arguments
as shown above, or sent in the content of the request, as shown in the second example below.

The following example shows the HTTP request and response when testing the login service in a browser. In
this case, the user credentials are passed as arguments and the browser sends a GET request. Because the GET
request is meant only for testing, it does not return a cookie with the session ID.

GET /jasperserver/rest/login?j_username=jasperadmin&j_password=jasperadmin HTTP/1.1
Host: localhost:8080

14

Chapter 1 Introduction to Web Services

User-Agent: Mozilla/5.0 (Windows NT 6.0; rv:5.0) Gecko/20100101 Firefox/5.0
Connection: keep-alive

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Pragma: No-cache
Cache-Control: no-cache
Expires: Wed, 31 Dec 1969 16:00:00 PST
Content-Length: 0
Date: Fri, 19 Aug 2011 00:52:48 GMT

The following example shows the content of a POST request where the credentials are passed in the content.

POST /jasperserver/rest/login HTTP/1.1
User-Agent: Jakarta Commons-HttpClient/3.1
Host: localhost:8080
Content-Length: 45
Content-Type: application/x-www-form-urlencoded
j_username=jasperadmin&j_password=jasperadmin

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=52E79BCEE51381DF32637EC69AD698AE; Path=/jasperserver
Content-Length: 0
Date: Fri, 19 Aug 2011 01:52:48 GMT

For optimal performance, the session ID from the cookie should be used to keep the session open. To do this,
include the cookie in future requests to the other RESTful services. For example, given the response to the
POST request above, future requests to the repository services should include the following line in the header:

Cookie: $Version=0; JSESSIONID=52E79BCEE51381DF32637EC69AD698AE; $Path=/jasperserver

However, maintaining a session with cookies is not mandatory, and your application can use any combination
of session cookie, HTTP Basic Authentication, or both.

1.3 REST Server Information
Use the following service to verify the server information, the same as the About JasperReports Server link
in the user interface.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo

Options

accept: application/xml

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – Body described below. This request should always succeed when the server
is running.

The server returns a structure containing the information in the requested format, XML or JSON:

15

JasperReports Server Web Services Guide

<serverInfo>
<build>20121029_1532</build>
<edition>PRO</edition>
<editionName>Enterprise</editionName>
<expiration/>
<features>Fusion AHD EXP DB AUD ANA

MT</features>
<licenseType>Commercial</licenseType>
<version>5.0.0</version>

</serverInfo>

{
"version" : "5.0.0",
"edition" : "PRO",
"editionName" : "Enterprise",
"licenseType" : "Commercial",
"build" : "20121029_1532",
"expiration" : "",
"features" : "Fusion AHD EXP DB AUD ANA

MT "
}

You can access each value separately with the following URLs:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/version
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/edition
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/editionName
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/build
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/licenseType
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/features
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/expiration

Return Value on Success Typical Return Values on Failure

200 OK – The requested value. These requests should always succeed when the
server is running.

1.4 SOAP Web Services Overview

With the completion of the REST v2 API in JasperReports Server 5.5, Jaspersoft announces the end of life
of the SOAP web services. The SOAP web services will no longer be maintained or updated to support
new features of the server. In particular, the SOAP web services do not support interactive charts or
interactive HTML5 tables.

For now, the SOAP web services are still available at the following URLs, where <host> is the name of the
computer hosting JasperReports Server and <port> is the port you specified during installation:

Edition Web Service URL

Community
Project

Repository http://<host>:<port>/jasperserver/services/repository

Scheduling http://<host>:<port>/jasperserver/services/ReportScheduler

Administration http://<host>:<port>/jasperserver/services/UserAndRoleManagementService

Table 1-4 SOAP - Deprecated Web Services and URLs

16

Chapter 1 Introduction to Web Services

Edition Web Service URL

Commercial
Editions

Repository http://<host>:<port>/jasperserver-pro/services/repository

Scheduling http://<host>:<port>/jasperserver-pro/services/ReportScheduler

Domains http://<host>:<port>/jasperserver-pro/services/DomainServices

Administration http://<host>:<port>/jasperserver-
pro/services/UserAndRoleManagementService

The context name (by default jasperserver or jasperserver-pro) may also depend on the specific
installation of JasperReports Server.

The web services take as input an XML document (the request) and return another XML document (the
operation result). Because they use XML, the web services provide easy, natural integration with the most
common programming languages and environments.

Jaspersoft provides two complete sample applications that demonstrate the SOAP web service: a simple J2EE
(Java 2 Enterprise Edition) web application and the same application written in PHP (PHP Hypertext
Preprocessor).

The SOAP web services often refer a namespace with the value of
http://www.jasperforge.org/jasperserver/ws namespace. This namespace is only an identifier; it is not
intended to be a valid URL.

1.5 SOAP Authentication
The calling application must supply a valid user and password with HTTP Basic Authentication to access the
web services. In basic authentication, the user ID and password are concatenated with a colon (:) and Base64
encoded in the HTTP request header. Usually, your client library does this for you. For example, the
administrator’s default credentials are jasperadmin:jasperadmin, which is encoded as follows:

Authorization: Basic amFzcGVyYWRtaW46amFzcGVyYWRtaW4=

The web services accept the same accounts and credentials as the JasperReports Server user interface.
• If there is only one organization, such as in the JasperReports Server default installation, you should specify

the user name only: WSUser. For example, jasperadmin.
• In deployments with multiple organizations, the organization ID or alias must be added, in the form

WSUser|TenantId or WSUser|TenantAlias. For example, you could use jasperadmin|organization_1
(WSUser|TenantId) or jasperadmin|CanadaBranch (WSUser|TenantAlias).

• See section 11.3, “Organizations/Tenants,” on page 212, for explanations of WSUser, TenantId, and
TenantAlias.

If login encryption in enabled in your server, you must encrypt the password before base64-encoding it with the
username. To encode the password, see section 1.2.1, “Login Encryption,” on page 13.

To simplify the development of web services in Java, Jaspersoft provides a set of helper classes, including a
ready-to-use client that can make it easier to integrate an external application with JasperReports Server, be it
web- or desktop-based. These classes include an object model that represents resources and creates requests and

17

JasperReports Server Web Services Guide

operation results, along with a Marshaller and an Unmarshaller class to quickly move between XML and the
Java object model. The presentation of each service includes code samples that show how to use these classes.

1.6 Syntax of resourceDescriptor
Resources (such as reports, images, queries, and content resources) are stored in a repository, which is organized
like a file system, with a root and a hierarchical set of folders. Each object in the repository is considered a
resource: a folder is a resource of type folder, a JRXML resource is a resource of type file, just as images and
JAR files are of type file. Some resources are more abstract, such as connection definitions and an input controls.
The repository web services operates on all resources.

1.6.1 Overview
A resource is identified by:
• A name.
• A label.
• A unique Uniform Resource Identifier (URI) that defines the location of the resource in the repository. A

URI is similar to a Unix path (for example, /reports/samples/AllAccounts).

A resource can have a set of properties (depending on its type) and a set of children resources.

The resource descriptor is a complex structure that transfers data regarding a specific resource between the server
and the client. A request can include only one resource descriptor. Often, the request only includes a small
portion of the entire resource descriptor definition: the part that describes the specific details of the resource in
question.

For example, when a resourceDescriptor is used as an input parameter in a request document (for example,
to specify a folder to list or a file to download), the descriptor includes only a small portion of the entire
resource descriptor definition: the part that describes the specific resource details in question. In many cases, the
only information required to identify a resource in the repository is its wsType, name, and URI.

The resource descriptors that the server sends are completely populated with all the data about the resources
being described.

A resourceDescriptor tag is defined by the following DTD (Document Type Definition):

<!ELEMENT resourceDescriptor (label, description?, resourceProperty*, resourceDescriptor*, parameter*)
>
<!ATTLIST resourceDescriptor
name CDATA #REQUIRED
wsType CDATA #REQUIRED
uriString CDATA #REQUIRED
isNew (true | false) false

>
<!ELEMENT resourceProperty (value?, resourceProperty*)>
<!ATTLIST resourceProperty
name CDATA #REQUIRED

>
<!ELEMENT value (#PCDATA)>
<!ELEMENT parameter (#PCDATA)>
<!ATTLIST parameter
name CDATA #REQUIRED
isListItem (true | false) false

>

18

Chapter 1 Introduction to Web Services

The following sections describe the DTD:
• wsType Attribute
• isNew Attribute
• Resource Descriptor Parameters
• Examples of resourceDescriptor

1.6.2 wsType Attribute
The wsType attribute defines the nature of the resource. The possible values for this attribute are:

wsType Value Description

aws Amazon Web Services data source

bean Data source of type Spring bean

contentResource The output of a report

datasource Generic data source – This type is normally used for a data source ReportUnit child
resource when it is not defined locally to the ReportUnit.

dataType Datatype (used with the input controls)

folder Folder

font Font file (normally a True Type font)

img Image file

inputControl Input control

jar JAR file

jdbc Data source of type JDBC

jndi Data source of type JNDI

jrxml JRXML source file

lov List of values (used with input controls)

olapMondrianCon OLAP Mondrian connection. A direct connection to an OLAP source.

olapMondrianSchema OLAP Mondrian Schema

olapXmlaCon OLAP XMLA connection. A remote connection to an OLAP source.

prop Resource bundle file (ending with .properties) for specific reports

Table 1-5 Values for wsType

19

JasperReports Server Web Services Guide

wsType Value Description

query Query used to retrieve data from a data source

reference Reference to another resource. References are only present in report units

reportUnit A complete report that can be run in JasperReports Server

virtual Virtual data source – This type has a child ResourceDescriptor for each data source
contained in the virtual data source.

xmlaConnection XML/A Connection

For all the other resource types found in the repository, the repository web service sets the attribute wsType to
UNKNOWN.

1.6.3 isNew Attribute
The isNew attribute is used with the put operation to indicate whether the resource being uploaded is new or
replaces an existing resource in the repository.

1.6.4 Resource Descriptor Parameters
A resource descriptor can contain one or more parameters: they do not describe the resource; they store the
values users select when the runReport service is invoked.

A resourceProperty is normally a simple pair of a name and a value. The Java class
com.jaspersoft.jasperserver.api.metadata.xml.domain.impl.ResourceDescriptor
contains constants for each property name. For a list of parameter names, see Appendix A,
“ResourceDescriptor API Constants,” on page 217. Jaspersoft may add further constants in future releases.

1.6.5 Examples of resourceDescriptor
The following resourceDescriptor sample contains a set of simple properties that describe a JDBC
connection resource:

<resourceDescriptor name="JServerJdbcDS" wsType="jdbc"
uriString="/datasources/JServerJdbcDS" isNew="false">

<label>JServer Jdbc data source</label>
<description>JServer Jdbc data source</description>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/datasources</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>0</value>

</resourceProperty>
<resourceProperty name="PROP_DATASOURCE_DRIVER_CLASS">
<value>com.mysql.jdbc.Driver</value>

</resourceProperty>
<resourceProperty name="PROP_DATASOURCE_CONNECTION_URL">

20

Chapter 1 Introduction to Web Services

<value>jdbc:mysql://localhost/test?autoReconnect=true</value>
</resourceProperty>

<resourceProperty name="PROP_DATASOURCE_USERNAME">
<value>username</value>

</resourceProperty>
<resourceProperty name="PROP_DATASOURCE_PASSWORD">
<value>password</value>

</resourceProperty>
</resourceDescriptor>

Some properties cannot be represented by a simple value. To accommodate more complicated properties, a
resourceProperty can recursively contain other resourceProperties. This is the case for a List of Values type
resource (used to define input controls for report parameters); the list values are contained in the
resourceProperty named PROP_LOV and are represented by sub-resourceProperties. For example:

<resourceDescriptor name="SampleLOV" wsType="lov" uriString="/datatypes/SampleLOV" isNew="false">
<label>Sample List of Values</label>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.ListOfValues
</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/datatypes</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>-1</value>

</resourceProperty>
<resourceProperty name="PROP_HAS_DATA">
<value>false</value>

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE">
<value>false</value>

</resourceProperty>

<resourceProperty name="PROP_LOV">
<resourceProperty name="US">
<value>United States</value>

</resourceProperty>
<resourceProperty name="CA">
<value>Canada</value>

</resourceProperty> <resourceProperty name="IN">
<value>India</value>

</resourceProperty>
<resourceProperty name="IT">
<value>Italy</value>

</resourceProperty>
<resourceProperty name="DE">
<value>Germany</value>

</resourceProperty>
<resourceProperty name="RO">
<value>Romania</value>

</resourceProperty>
</resourceProperty>

</resourceDescriptor>

This example defined a list of countries. Notice that, for each list item, the resourceProperty name represents
the item value, and the resourceProperty value contains the item label.

21

JasperReports Server Web Services Guide

22

CHAPTER 2 REST V2 - REPOSITORY SERVICES
For authentication using the REST web services, see section 1.2, “REST Authentication,” on page 12.

This chapter includes the following sections:
• The v2/resources Service
• The v2/domains/metadata Service
• The v2/permissions Service
• The v2/export Service
• The v2/import Service

2.1 The v2/resources Service
The REST v2/resources service replaces the original resource and resources services to search the repository and
access the resources it contains. This new service provides greater performance and more consistent handling of
resource descriptors for all repository resource types. The service has two formats, one takes search parameters to
find resources, the other takes a repository URI to access resource descriptors and file contents.

2.1.1 V2 Resource Descriptors
The v2/resources service introduces new resource descriptors for nearly all repository objects. This section
introduces the features of the new descriptors, and the next section, The v2/resources Service, lists all the
descriptors and the specific attributes of each.

2.1.1.1 Resource IDs

The ID of a resource is its unique name within the folder where it resides. Resource descriptors do not have an
explicit ID attribute, but the ID is always the last component of the URI field in responses from the server.

When sending resource descriptors in requests, the URI field is ignored. The URI and ID of a created resource is
determined in one of the following ways:
• POST operations on the v2/resources service specify a folder. The resource descriptor in the request is

created in the specified folder. The ID is created automatically from the label of the resource by replacing
special characters with underscores (_). The URI of the new resource is returned in the server's response and
consists of the target folder with the automatic ID appended to it.

23

JasperReports Server Web Services Guide

• PUT operations on the v2/resources service send a descriptor to create the resource at the URI specified in
the request. The resource ID is the last element of this URI, as long as it is unique in the parent folder. The
server's response should confirm that the resource was successfully created with the requested URI.

2.1.1.2 Custom Media Types

In order to specify all the different types of resources, the v2/resources service relies on custom media types with
the following syntax:

application/repository.<resourceType>+<format>

where:
• <resourceType> is the name for each type of repository resource, such as reportUnit, dataType, or

jdbcDataSource. The names of all supported types are given in The v2/resources Service.
• <format> is the representation format of the descriptor, either json or xml.

For example:

application/repository.dataType+json - JSON representation of a datatype resource

application/repository.reportUnit+xml - XML representation of a JRXML report

The custom media types should be used in Content-Type and Accept HTTP headers, as described in the
following sections. According to the HTTP specification, headers should be case insensitive; the headers and
custom media types can be upper case, lower case, or any mixture of upper and lower case.

2.1.1.3 Accept HTTP Headers

Client applications should use the Accept HTTP header in a request to specify the desired format in the server's
response. Generally, regardless of the resource type, it's enough to specify:
• Accept: application/json to get response in JSON format or
• Accept: application/xml to get response in XML fomat.

The server will respond with the specific custom media type for the requested resource, as described in the next
section.

However, there are some special cases where client must specify a precise resource type:
• When requesting the resource details of the root folder, client must specify

application/repository.folder+<format> to get its resource descriptor. Otherwise, the request is considered a
search of the root folder.

• When requesting the resource details of a file resource, as opposed to the file contents, the client must
specify application/repository.file+<format>. Without this Accept header, the response will contain the file
contents. The custom media type also distinguishes between the XML descriptor of a file and the contents
of an XML file.

If the client specifies a custom type in the Accept header that does not match the resource being requested, the
server responds with the error code 406 Not Acceptable.

2.1.1.4 Content-Type HTTP Headers

The Content-Type HTTP header indicates the media type being sent in the body of the request or response. For
example, if the client requests a valid datatype resource, and depending on the format that the client specified in
the Accept header of the request, the server's response includes:
• Content-Type: application/repository.dataType+json or
• Content-Type: application/repository.dataType+xml

24

Chapter 2 REST v2 - Repository Services

When the client uploads a resource descriptor to create or update a resource, it must set the Content-Type
connector accurately. For example, when uploading a datatype resource represented in XML, the client must
send:

Content-Type: application/repository.dataType+xml

The server relies on the Content-Type header to parse the body of the request, and it will respond with the error
code 400 Bad Request if there is a mismatch. In the example above, the following headers will result in an
error:
• Content-Type: application/xml - custom media type not included
• Content-Type: application/repository.reportUnit+xml - media type mismatch
• Content-Type: application/repository.dataType+json - format mismatch

2.1.1.5 JSON Format

JasperReports Server uses the standard JSON (JavaScript Object Notation) format to send and receive
representations of resources and other structures. The JSON marshalling and unmarshalling (parsing) uses the
following conventions:
• Attributes with no value or a null value are not transmitted in a request.
• Unknown properties that JasperReports Server does not recognize are ignored without error.
• Dates should be given in ISO 8601 format.

2.1.1.6 Nested Resources

Many types of resources in the repository are defined in terms of other resources. For example, some types of
input controls require a query, and the query itself requires a data source. The nested query and data source can
be defined in two ways:
• Referenced resources - a link to a valid resource defined elsewhere in the repository. JasperReports Server

manages the references between resources by enforcing permissions and protecting dependencies from
deletion.

• Local resources - a resource descriptor nested within the parent descriptor. The nested resource is fully
defined within the parent resource and not available for being referenced from elsewhere.

Both types of nested resources are further described in the following sections.

2.1.1.7 Referenced Resources

Referenced resources are defined by special structures within the descriptors of other resources. For example, in
the following query resource, the data source field contains a dataSourceReference object that contains the URI
of the target reference:

{
"version": 0,
"permissionMask": 1,
"creationDate": "2013-10-03 16:32:37",
"updateDate": "2013-10-03 16:32:37",
"label": "Country Query",
"description": null,
"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/

country_query",
"dataSource": { contents }, <*>
"value": "select distinct billing_address_country from accounts order by billing_address_country",
"language": "sql"

25

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

JasperReports Server Web Services Guide

}

<*> or "dataSourceReference": {
"uri": "/datasources/JServerJNDIDS"

},

To create referenced resources, send requests to the server that contain the appropriate reference objects for the
target resource. See the The v2/resources Service for the specific reference objects available in each resource
descriptor.

When reading resources with referenced resources, the uri attribute gives the repository URI of the reference.
To simplify the parsing of referenced resources, the v2/resources service GET method supports the
expanded=true parameter. Instead of following references and requiring two or more GET requests, the
expanded=true parameter returns all referenced resources fully expanded within the parent resource, as if it were
a local resource.

The following resource types support referenced resources, and the table gives the name of the field that
contains the referenced URI, and the name of the expanded type that replaces the reference.

Resource Type Reference Attribute(s) Expanded Name and Descriptor

query dataSourceReference awsDataSource, beanDataSource,
customDataSource, jdbcDataSource,
jndiJdbcDataSource,
virtualDataSource,
semanticLayerDataSource or
advDataSource (adhocDataView)

inputControl datatypeReference
listOfValuesReference
queryReference

dataType
listOfValues
query

reportUnit jrxmlFileReference
dataSourceReference
queryReference
inputControlReference
fileReference (images, ...)

jrxmlFile with file attributes
see query dataSourceReference
query
inputControl
fileResource with file attributes

semanticLayerDataSource
(Domain)

dataSourceReference
schemaFileReference
fileReference (bundle)
securityFileReference

see query dataSourceReference
schemaFile with file attributes
file of appropriate type
securityFile with file attributes

olapUnit olapConnectionReference xmlaConnection,
mondrianConnection,
or secureMondrianConnection

mondrianConnection dataSourceReference
schemaReference

see query dataSourceReference
schema with file attributes

26

Chapter 2 REST v2 - Repository Services

Resource Type Reference Attribute(s) Expanded Name and Descriptor

secureMondrianConnection dataSourceReference
schemaReference
accessGrantSchemaReference

see query dataSourceReference
schema with file attributes
accessGrantSchema with file
attributes

mondrianXmlaDefinition mondrianConnectionReference mondrianConnection
or secureMondrianConnection

2.1.1.8 Local Resources

Nested resources that are not referenced resources must be defined locally within the parent resource. The nested
resource is defined by a complete resource descriptor of the appropriate type. The following example shows a
data source that is defined locally within the parent query resource:

{
"version": 0,
"permissionMask": 1,
"creationDate": "2013-10-03 16:32:37",
"updateDate": "2013-10-03 16:32:37",
"label": "Country Query",
"description": null,
"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/country_

query",
"dataSource": {

"jndiJdbcDataSource": {
"version": 0,
"permissionMask": 1,
"creationDate": "2013-10-03 16:32:05",
"updateDate": "2013-10-03 16:32:05",
"label": "my JNDI ds",
"description": "Local JNDI Data Source",
// URI of expanded nested resource is ignored. Resource is created locally
"uri": "/datasources/JServerJNDIDS",
"jndiName": "jdbc/sugarcrm",
"timezone": null

}
},
"value": "select distinct billing_address_country from accounts order by billing_address_country",
"language": "sql"

}

Use nested descriptors such as the ones above to create resources that contain local resources. Descriptors can be
nested to any level, as long as the syntax of each descriptor is valid. See The v2/resources Service for the
correct syntax of both the parent and the nested resource.

Internally, the v2/repository service handles local resources as normal resources contained in a hidden folder.
The hidden folder containing local resources has the following name:

<parentURI>_files/

and local resources can be accessed at the following URI:

<parentURI>_files/<resourceID>

27

JasperReports Server Web Services Guide

In the example above, we can see that the parent query resource is a nested resource itself. Its URI shows us that
it is the query resource for a query-based input-control of a topic resource:

/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/country_query

and the new nested data source will have the following URI:

/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/country_query_files/my_
JNDI_ds

The ID of the nested resource (my_JNDI_ds) is created automatically from the label of the nested resource.

The _files folder that exists in all parents of local resources is hidden so that its local resources do not appear in
repository searches. You can set the showHiddenItems=true parameter on the v2/resources request to search a _
files folder for all local resources, such as in a JRXML report (reportUnit).

Local resources in the hidden _files folder can also be created and updated separately from their parent resources
by using PUT and POST methods of the v2/resources service and specifying the complete URI of the local
resource as shown above.

2.1.1.9 Optimistic Locking

The v2/resources service supports optimistic locking on all write and update operations (PUT, POST, and
PATCH). When using the service to search the repository and receive descriptors of the resources, all descriptors
contain a version number field. Clients should return the same version number when writing or updating a given
resources. The server compares the version number in the modify request the current version of the resource to
assure that no other client has updated the same resource.

If the version numbers do not match, the server replies with error code 409 Conflict. In that case, the client
should request the resource again (read operation with GET) and send the modify request with an updated
version number.

When a modify operation is successful, the server increments the version number on the affected resource and
returns the new descriptor with the new version as confirmation that the operation was successful.

2.1.1.10 Update-only Passwords

Some resource descriptors such as jdbcDataSource and xmlaConnection contain a password field. All password
fields are blank or missing when reading (GET) a resource descriptor. This prevents anyone, even administrators
from seeing existing passwords.

Write or update operations (PUT or POST) may send the password field in descriptors that support it. In this
case, the password value is updated in the resource in the repository. Make sure that resources with sensitive
passwords have the proper permissions so that only authorized users can modify them.

2.1.2 V2 Resource Descriptor Types
The following sections show the name and attributes of each descriptor for repositry resources used by the
v2/resources service.

2.1.2.1 Common Attributes

All resource types contain the following attributes. Of these common attributes, only the label and description
fields are writable.

In general, writable fields are ones that can be set by the client when sending a descriptor for a write or update
operation (PUT or POST). The other fields are read-only fields that the server sets automatically.

28

Chapter 2 REST v2 - Repository Services

application/repository.{resourceType}+json application/repository.{resourceType}+xml

{
"uri" :"/sample/resource/uri",
"label":"Sample Label",
"description":"Sample Description",
"permissionMask":"0",
"creationDate": "2013-07-04 12:18:47",
"updateDate": "2013-07-04 12:18:47",
"version":"0"
...

}

<?xml version="1.0" encoding="UTF-8" stand-
alone="yes"?>
<{resourceType}>

<uri>/sample/resource/uri</uri>
<label>Sample Label</label>
<description>Sample Description

</description>
<permissionMask>0</permissionMask>
<creationDate>2013-07-04 12:18:47

</creationDate>
<updateDate>2013-07-04 12:18:47

</updateDate>
<version>0</version>
...

</{resourceType}>

Throughout the rest of the resource type sections, the common attributes are included in every descriptor as
{commonAttributes}.

2.1.2.2 Folder

Folder types do not contain any additional fields beyond the common attributes shown above.

application/repository.folder+json application/repository.folder+xml

{
"uri" :"{resourceUri}",
"label":"Sample Label",
"description":"Sample Description",
"permissionMask":"0",
"creationDate": "2013-07-04 12:18:47",
"updateDate": "2013-07-04 12:18:47",
"version":"0"

}

<folder>
<uri>/sample/resource/uri</uri>
<label>Sample Label</label>
<description>Sample Description</description>
<permissionMask>0</permissionMask>
<creationDate>2013-07-04 12:-

18:47</creationDate>
<updateDate>2013-07-04 12:18:47</updateDate>
<version>0</version>

</folder>

Only the label and description fields are writable.

2.1.2.3 JNDI Data Source

application/repository.jndiJdbcDataSource+json application/repository.jndiJdbcDataSource+xml

{
{commonAttributes},
"jndiName":"{jndiName}",
"timezone":"{timezone}"

}

<jndiDataSource>
{commonAttributes}
<jndiName>{jndiName}</jndiName>
<timezone>{timezone}</timezone>

</jndiDataSource>

29

JasperReports Server Web Services Guide

2.1.2.4 JDBC Data Source

application/repository.jdbcDataSource+json application/repository.jdbcDataSource+xml

{
{commonAttributes},
"driverClass":"{driverClass}",
"password":"{password}",
"username":"{username}",
"connectionUrl":"{connectionUrl}",
"timezone":"{timezone}"

}

<jdbcDataSource>
{commonAttributes}
<driverClass>{driverClass}</driverClass>
<password>{password}</password>
<username>{username}</username>
<connectionUrl>

{connectionUrl}
</connectionUrl>
<timezone>{timezone}</timezone>

</jdbcDataSource>

2.1.2.5 AWS Data Source

application/repository.awsDataSource+json application/repository.awsDataSource+xml

{
{commonAttributes},
"driverClass":"{driverClass}",
"password":"{password}",
"username":"{username}",
"connectionUrl":"{connectionUrl}",
"timezone":"{timezone}",
"accessKey":"{accessKey}",
"secretKey":"{secretKey}",
"roleArn":"{roleArn}",
"region":"{region}",
"dbName":"{dbName}",
"dbInstanceIdentifier":"{dbInstanceIdentifier}

",
"dbService":"{dbService}"

}

<awsDataSource>
{commonAttributes}
<driverClass>{driverClass}</driverClass>
<password>{password}</password>
<username>{username}</username>
<connectionUrl>

{connectionUrl}
</connectionUrl>
<timezone>{timezone}</timezone>
<accessKey>{accessKey}</accessKey>
<secretKey>{secretKey}</secretKey>
<roleArn>{roleArn}</roleArn>
<region>{region}</region>
<dbName>{dbName}</dbName>
<dbInstanceIdentifier>

{dbInstanceIdentifier}
</dbInstanceIdentifier>
<dbService>{dbService}</dbService>

</awsDataSource>

2.1.2.6 Virtual Data Source

The id of each subDataSource must be unique. The server does not prevent duplicates, and the last one to be
defined silently overwrites the previous definition.

application/repository.virtualDataSource+json application/repository.virtualDataSource+xml

{
{commonAttributes},
"subDataSources":[

{
"id":"{subDataSourceId}",
"uri":"{subDataSourceUri}"

},
...

]
}

<virtualDataSource>
{commonAttributes}
<subDataSources>

<subDataSource>
<id>{subDataSourceId}</id>
<uri>{subDataSourceUri}</uri>

</subDataSource>
...

</subDataSources>
</virtualDataSource>

30

Chapter 2 REST v2 - Repository Services

2.1.2.7 Custom Data Source

The value of the serviceClass attribute is read-only and depends on the specific type of the custom data
source, as defined in the server's applicationContext configuration files.

application/repository.customDataSource+json application/repository.customDataSource+xml

{
{commonAttributes},
"serviceClass":"{serviceClass}",
"dataSourceName":"{dataSourceName}",
"properties":[

{
"key":"{key}",
"value":"{value}"

},
...

]
}

<customDataSource>
{commonAttributes}
<serviceClass>

{serviceClass}
</serviceClass>
<dataSourceName>

{dataSourceName}
</dataSourceName>
<properties>

<property>
<key>{key}</key>
<value>{value}</value>

</property>
...

</properties>
</customDataSource>

2.1.2.8 Bean Data Source

application/repository.beanDataSource+json application/repository.beanDataSource+xml

{
{commonAttributes},
"beanName":"{beanName}",
"beanMethod":"{beanMethod}"

}

<beanDataSource>
{commonAttributes}
<beanName>{beanName}<beanName>
<beanMethod>{beanMethod}</beanMethod>

</beanDataSource>

2.1.2.9 XML/A Connection

application/repository.xmlaConnection+json application/repository.xmlaConnection+xml

{
{commonAttributes},
"url":"{xmlaServiceUrl}",
"xmlaDataSource":"{xmlaDataSource}",
"catalog":"{catalog}",
"username":"{username}",
"password":"{password}"

}

<xmlaConnection>
{commonAttributes}
<url>{xmlaServiceUrl}</url>
<xmlaDataSource>

{xmlaDataSource}
</xmlaDataSource>
<catalog>{catalog}</catalog>
<username>{username}</username>
<password>{password}</password>

</xmlaConnection>

31

JasperReports Server Web Services Guide

2.1.2.10 Datatypes

application/repository.dataType+json application/repository.dataType+xml

{
{commonAttributes},
"type":"text|number|date|dateTime|time",
"pattern":"{pattern}",
"maxValue":"{maxValue}",
"strictMax":"true|false",
"minValue":"{minValue}",
"strictMin":"true|false"
"maxLength":"{maxLengthInteger}"

}

<dataType>
{commonAttributes}
<type>text|number|date|dateTime|time</type>
<pattern>{pattern}</pattern>
<maxValue>{maxValue}</maxValue>
<strictMax>true|false</strictMax>
<minValue>{minValue}</minValue>
<strictMin>true|false</strictMin>
<maxLength>{maxLengthInteger}</maxLength>

</dataType>

2.1.2.11 List of Values

application/repository.listOfValues+json application/repository.listOfValues+xml

{
{commonAttributes},
"items":[

{
"label":"{label}",
"value":"{value}"

},
...

]
}

<listOfValues>
{commonAttributes}
<items>

<item>
<label>{label}</label>
<value>{value}</value>

</item>
...

</items>
</listOfValues>

2.1.2.12 Query

The dataSource field of the query is nullable. Set an empty dataSource field when you want to remove a local
datasource, either a reference or a local definition. When the data source of a query is not defined, the query
uses the data source of its parent, for example its JRXML report (reportUnit).

application/repository.query+json application/repository.query+xml

{
{commonAttributes},
"value":"{query}",
"language":"{language}",
"dataSource":{

"dataSourceReference": {
"uri":"{dataSourceUri}"

}
}

}

<query>
{commonAttributes}
<value>{query}</value>
<language>{language}</language>
<dataSourceReference>

<uri>{dataSourceUri}</uri>
</dataSourceReference>

</query>

2.1.2.13 Input Control

Input controls come in several types that require different fields. The following table shows all possible fields,
not all of which are mutually compatible.

32

Chapter 2 REST v2 - Repository Services

application/repository.inputControl+json application/repository.inputControl+xml

{
{commonAttributes},
"mandatory":"{true|false}",
"readOnly":"{true|false}",
"visible":"{true|false}",
"type":"{inputControlTypeByteValue}",
"usedFields":"{field1;field2;...}",
"dataType": {

"dataTypeReference": {
"uri": "{dataTypeResourceUri}"

}
},
"listOfValues": {

"listOfValuesReference": {
"uri": "listOfValuesResourceUri"

}
}
"visibleColumns":["column1", "colum2", ...],
"valueColumn":"{valueColumn}",
"query": {

"queryReference": {
"uri": "{queryResourceUri}"

}
}

}

<inputControl>
{commonAttributes}
<mandatory>true|false</mandatory>
<readOnly>true|false</readOnly>
<visible>true|false</visible>
<type>{inputControlTypeByteValue}</type>
<usedFields>{field1;field2;...}</usedFields>
<dataTypeReference>

<uri>{dataTypeResourceUri}</uri>
</dataTypeReference>
<listOfValuesReference>

<uri>{listOfValuesResourceUri}</uri>
</listOfValuesReference>
<queryReference>

<uri>{queryResourceUri}</uri>
</queryReference>
<visibleColumns>

<column>{column1}</column>
<column>{column2}</column>
<column>...</column>

</visibleColumns>
<valueColumn>{valueColumn}</valueColumn>

</inputControl>

The following list shows the numerical code and meaning for the {inputControlTypeByteValue}. The input
control type determines the other fields that are required. The list of required fields may appear in a field named
usedFields, separated by semi-colons (;).

"type" Type of Input Control Other Fields Required (usedFields)

1 Boolean None

2 Single value dataType

3 Single-select list of values listOfValues

4 Single-select query query; queryValueColumn

5 Not used

6 Multi-select list of values listOfValues

7 Multi-select query query; queryValueColumn

8 Single-select list of values radio buttons listOfValues

9 Single-select query radio buttons query; queryValueColumn

10 Multi-select list of values check boxes listOfValues

11 Multi-select query check boxes query; queryValueColumn

33

JasperReports Server Web Services Guide

2.1.2.14 File

The repository.file+<format> descriptor is used to identify the file type. The content field is used only when
uploading a file resource as base-64 encoded content. For other ways to upload file contents, see Uploading
File Resources. The content field is absent when requesting a file resource descriptor. For more information, see
Downloading File Resources.

application/repository.file+json application/repository.file+xml

{
{commonAttributes},
"type":"pdf|html|xls|rtf|csv|odt|txt

|docx|ods|xlsx|img|font|jrxml
|jar|prop|jrtx|xml|css
|olapMondrianSchema
|accessGrantSchema
|unspecified}",

// content is write-only;
// it is not included in a response
"content":"{base64EncodedContent}"

}

<file>
{commonAttributes}
<type>pdf|html|xls|rtf|csv|odt|txt

|docx|ods|xlsx|img|font|jrxml
|jar|prop|jrtx|xml|css
|olapMondrianSchema
|accessGrantSchema|unspecified}

</type>
<content>{base64EncodedContent}</content>

</file>

2.1.2.15 Report Unit (JRXML Report)

A report unit contains mostly references to the files that make up a report within the server. A report unit is a
composite resource that may contain other local resources. In this case, the URIs that it references include a URI
in the following format:

<reportUnitURI>_files/<localResourceID>

For example, the main JRXML of a sample report is referenced as follows:

/reports/samples/Cascading_multi_select_report_files/Cascading_multi_select_report

For more information, see V2 Resource Descriptor Types.

34

Chapter 2 REST v2 - Repository Services

application/repository.reportUnit+json application/repository.reportUnit+xml

{
{commonAttributes},
"alwaysPromptControls":

"{true|false}",
// default is "popupScreen"
"controlsLayout":

"{popupScreen|separatePage
|topOfPage|inPage}",

"inputControlRenderingView":
"{inputControlRenderingView}",

"reportRenderingView":
"{reportRenderingView}",

"dataSource":{
"dataSourceReference": {

"uri":"{dataSourceUri}"
}

},
// "query" is nullable
"query:" {

"queryReference": {
uri: "{queryResourceUri}"

}
},
"jrxml": {

"jrxmlFileReference": {
"uri": "{jrxmlFileResourceUri}"

}
}
"inputControls": [

{
"inputControlReference": {

"uri": "{inputControlUri}"
}

},
...

],
"resources": [

"resource": {
"name": "{resourceName}",
"file": {contents} <*>
}

},
...

]
}

<*> or "fileReference": {
"uri": "{fileResourceUri}"

}

<reportUnit>
{commonAttributes}
<alwaysPromptControls>true|false

</alwaysPromptControls>
<!-- default is "popupScreen" -->
<controlsLayout>

popupScreen|separatePage
|topOfPage|inPage

</controlsLayout>
<inputControlRenderingView>

{inputControlRenderingView}
</inputControlRenderingView>
<reportRenderingView>

{reportRenderingView}
</reportRenderingView>
<dataSourceReference>

<uri>{dataSourceUri}</uri>
</dataSourceReference>
<queryReference>

<uri>{queryResourceUri}</uri>
</queryReference>
<jrxmlFileReference>

<uri>{jrxmlFileResourceUri}</uri>
</jrxmlFileReference>
<inputControls>

<inputControlReference>
<uri>{inputControlUri}</uri>

</inputControlReference>
...

</inputControls>
<resources>

<resource>
<name>{resourceName}</name>
<file>contents</file> {*}

</resource>
...

</resources>
</reportUnit>

{*} or <fileReference>
<uri>{fileResourceUri}</uri>

</fileReference>

35

JasperReports Server Web Services Guide

2.1.2.16 Report Options

application/repository.reportOptions+json application/repository.reportOptions+xml

{
{commonAttributes},
"reportUri":"{reportUri}",
"reportParameters":[

{
"name":"{parameterName}",
"value":[

"value_1",
"value_2",
...

]
},
...

]
}

<reportOptions>
{commonAttributes}
<reportUri>{reportUri}</reportUri>
<reportParameters>

<reportParameter>
<name>{parameterName}</name>
<value>value_1</value>
<value>value_2</value>
...

</reportParameter>
...

</reportParameters>
</reportOptions>

2.1.2.17 Domain (semanticLayerDataSource)

For more information about accessing the schema of a Domain, see The v2/domains/metadata Service.

36

Chapter 2 REST v2 - Repository Services

appli-
cation/repository.semanticLayerDataSource+json

appli-
cation/repository.semanticLayerDataSource+xml

{
{commonAttributes},
"dataSource":{

"dataSourceReference": {
"uri":"{dataSourceUri}"

}
},
"schema": {

"schemaFileReference": {
"uri": "{schemaFileResourceUri}"

}
},
"bundles": [

{
// empty localeString indicates

default bundle
"locale": "{localeString}",
"file": {

"fileReference": {
"uri": "{prop-

ertiesFileResourceUri}"
}

}
},
...

],
"securityFile": {

"securityFileReference": {
"uri": "{securityFileResourceUri}"

}
}

}

<semanticLayerDataSource>
{commonAttributes}
<dataSourceReference>

<uri>{dataSourceUri}</uri>
</dataSourceReference>
<schemaFileReference>

<uri>{schemaFileResourceUri}</uri>
</schemaFileReference>
<bundles>

<bundle>
<!-- <locale/> indicates default

bundle -->
<locale>{localeString}</locale>
<fileReference>

<uri>{prop-
ertiesFileResourceUri}</uri>

</fileReference>
</bundle>
...

</bundles>
<securityFileReference>

<uri>{securityFileResourceUri}</uri>
</securityFileReference>

</semanticLayerDataSource>

2.1.2.18 Domain Topic

A Domain Topic is a Topic created by selecting database fields from a Domain. It is structurally equivalent to a
JRXML report, and thus it has the same type attributes (see Report Unit (JRXML Report)). The only
difference is that the data source field will reference a Domain (semanticLayerDataSource).

application/repository.domainTopic+json application/repository.domainTopic+xml

Same attributes as
application/repository.reportUnit+json

Same attributes as
application/repository.reportUnit+xml

2.1.2.19 Mondrian Connection

Mondrian connections without the access grant schemas are used in the communuity edition of JasperReports
Server.

37

JasperReports Server Web Services Guide

application/repository.mondrianConnection+json application/repository.mondrianConnection+xml

{
{commonAttributes},
"dataSource":{

"dataSourceReference": {
"uri":"{dataSourceUri}"

}
},
"schema": {

"schemaReference": {
"uri": "{schemaFileResourceUri}"

}
}

}

<mondrianConnection>
{commonAttributes}
<dataSourceReference>

<uri>{dataSourceUri}</uri>
</dataSourceReference>
<schemaReference>

<uri>{schemaFileResourceUri}</uri>
</schemaReference>

</mondrianConnection>

2.1.2.20 Secure Mondrian Connection

Secure Mondrian Connections are available only in commercial releases of JasperReports Server.

appli-
cation/repository.secureMondrianConnection+json

appli-
cation/repository.secureMondrianConnection+xml

{
{commonAttributes},
"dataSource":{

"dataSourceReference": {
"uri":"{dataSourceUri}"

}
},
"schema": {

"schemaReference": {
"uri": "{schemaFileResourceUri}"

}
},
"accessGrantSchemas": [

{
"accessGrantSchemaReference": {

"uri": "{access-
GrantSchemaFileResourceUri}"

}
},
...

]
}

<secureMondrianConnection>
{commonAttributes}
<dataSourceReference>

<uri>{dataSourceUri}</uri>
</dataSourceReference>
<schemaReference>

<uri>{schemaFileResourceUri}</uri>
</schemaReference>
<accessGrantSchemas>

<accessGrantSchemaReference>
<uri>{access-

GrantSchemaFileResourceUri}</uri>
</accessGrantSchemaReference>

</accessGrantSchemas>
</secureMondrianConnection>

38

Chapter 2 REST v2 - Repository Services

2.1.2.21 OLAP Unit

application/repository.olapUnit+json application/repository.olapUnit+xml

{
{commonAttributes},
"mdxQuery":"{mdxQuery}",
"olapConnection": {

"olapConnectionReference": {
"uri": "{olapConnectionReferenceUri}"

}
}

}

<olapUnit>
{commonAttributes}
<mdxQuery>{mdxQuery}</mdxQuery>
<olapConnectionReference>
<uri>{olapConnectionReferenceUri}</uri>

</olapConnectionReference>
</olapUnit>

2.1.2.22 Mondrian XML/A Definition

application/repository.mondrianXmlaDefinition+json appli-
cation/repository.mondrianXmlaDefinition+xml

{
{commonAttributes},
"catalog":"{catalog}",
"mondrianConnection": {

"mondrianConnectionReference": {
"uri": "{mon-

drianConnectionResourceUri}"
}

}
}

<mondrianXmlaDefinition>
{commonAttributes}
<catalog>{catalog}</catalog>
<mondrianConnectionReference>

<uri>{mondrianConnectionResourceUri}
</uri>

</mondrianConnectionReference>
</mondrianXmlaDefinition>

2.1.2.23 Other Types

The following types are defined in commercial editions of the server and appear in the repository. However,
they are meant only to describe the corresponding resources as read-only objects in the repository. The REST
API does not support services for clients to create or modify these types.

The types in the following table contain only the Common Attributes.

Type String Description

application/repository.dashboard+json
application/repository.dashboard+xml

The dashboard resource descriptors are deprecated
and subject to change.

application/repository.adhocDataView+json
application/repository.adhocDataView+xml

The Ad Hoc view type is not fully defined yet and
subject to change. Ad Hoc views may be referenced
as data sources in other repository types, in which
case they are called advDataSource.

39

JasperReports Server Web Services Guide

2.1.3 Searching the Repository
The v2/resources service, when used without specifying any repository URI, is used to search the repository.
The various parameters listed in the following table let you refine the search and specify how you receive search
results. For example, the search and results pagination parameters can be used to implement an interface to
repository resources in a REST client application.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources?<parameters>

Parameter Type/Value Description

q String Search for resources having the specified text in the name or description.
Note that the search string does not match in the ID of resources.

folderUri String The path of the base folder for the search.

recursive true|false Indicates whether search should include all sub-folders recursively. When
omitted, the default behavior is recursive (true).

type String Match only resources of the given type. Valid types are listed inSearching
the Repository, for example: dataType, jdbcDataSource, reportUnit, or file.
Multiple type parameters are allowed. Wrong values are ignored.

accessType viewed
|modified

Filters the results by access events: viewed (by current user) or modified (by
current user). By default, no access event filter is applied.

showHidden
Items

true|false When set to true, results include nested local resources (in _files) as if they
were in the repository. For more information, see Searching the Repository
for more information. By default, hidden items are not shown (false).

sortBy optional
String

One of the following strings representing a field in the results to sort by: uri,
label, description, type, creationDate, updateDate, accessTime, or popularity
(based on access events). By default, results are sorted alphabetically by
label.

limit
offset
forceFullPage
ForceTotalCount

These parameters are described in “Searching the Repository” on
page 40

Options

accept: application/json (default)

accept: application/xml

Return Value on Success Typical Return Values on Failure

200 OK – The body contains a list of
resourceLookup descriptors representing the
results of the search.

404 Not Found – The specified folder is not found in the
repository.

204 No Content – All type values specified are invalid.

40

Chapter 2 REST v2 - Repository Services

The response of a search is a set of shortened descriptors showing only the common attributes of each resource.
One additional attribute specifies the type of the resource. This allows the client to quickly receive a list of
resources for display or further processing.

application/json application/xml

[
{

"uri" :"/sample/resource/uri",
"label":"Sample Label",
"description":

"Sample Description",
"type":"folder"
"permissionMask":"0",
"creationDate":

"2013-07-04 12:18:47",
"updateDate":

"2013-07-04 12:18:47",
"version":"0"

},
...

]

<resources>
<resourceLookup>

<uri>/sample/resource/uri</uri>
<label>Sample Label</label>
<description>Sample Description

</description>
<type>folder</type>
<permissionMask>0</permissionMask>
<creationDate>2013-07-04 12:18:47

</creationDate>
<updateDate>2013-07-04 12:18:47

</updateDate>
<version>0</version>

</resourceLookup>
...

</resources>

2.1.4 Paginating Search Results
Paginating search results can speed up the user experience by making smaller queries and displaying the fewer
results one page at a time. By default, a page is approximately 100 repository items. If and when users request
another page, your application needs to send another request to the server with the same search paramters but an
updated offset number that fetches the next page.

Your application could perform further optimizations such as requesting a page and storing it before the user
requests it. That way, the results can be displayed immediately, and each page can be fetched in the background
while the user is looking at the previous page.

Pagination is complicated by the fact that JasperReports Server enforces permissions after performing the query
based on your search ciriteria. This means that a default search can return fewer results than a full page, but this
behavior can be configured.

There are 3 different combinations of settings that you can use for pagination.
• Default pagination - Every page may have less than a complete page of results, but this is the most

performant strategy and the easiest to implement.
• Full page pagination - Ensures that every page has exactly the number of results that you specify, but this

makes the server perform more queries, and it requires extra logic in the client.
• No pagination - Requests all search results in a single reply, which is simplest to process but can block the

caller for a noticeable delay when there are many results.

The advantages and disadvantages of each pagination strategy are described in the following sections. Choose a
strategy for your respository searches based on the types searches being performed, the user performing the
search, and the contents of your repository. Every request to the v2/resources service can use a different
pagination strategy; it's up to your client app to use the appropriate strategy and process the results accordingly.

41

JasperReports Server Web Services Guide

2.1.4.1 Default Pagination

With the default pagination, every page of results returned by the server may contain less than the designated
page size. You can determine the number of actual results from HTTP headers of the response. The headers also
indicate whether there are further pages to fetch.

Default pagination has the best performance and when configured with the right limit for the size of your
repository, almost no delay in response for your users. Because results are filtered by permissions, the user you
specify in the request often determines how full each page is:
• For searches run as superuser, the results are effectively unfiltered and each page is full. But the same can be

true when you perform a search as jasperadmin within his organization, or even as a plain user within a
folder where he has full read permission. In these cases the default pagination is very efficient and has no
partially full pages.

• If you are performing a sparse search, for example, finding all reports that a given user has permission to
access within an entire and large organization, then the results may have many partially-full page, all of
differing lengths. In this case, you may prefer to use “Full Page Pagination” on page 43.

For default pagination, set the pagination parameters of the v2/resources service as follows:

Parameter Type/Value Description

limit integer
default is 100

This defines the page size, which is maximum number of resources to return
in each response. However, with default pagination, the response is likely
have less than this value of responses. The default limit is 100. You can set
the limit higher or lower if you want to process generally larger or smaller
pages, respectively.

offset integer By setting the offset to a whole multiple of the limit, you select a specific
page of the results. The default offset is 0 (first page). With a limit of 100,
subsequent calls should set offset=100 (second page), offset=200 (third
page), etc.

forceFullPage false (default) The default is false, so you do not need to specify this parameter.

forceTotal
Count

true|false When true, the Total-Count header is set in every paginated response,
which impacts performance. When false, the default, the header is set in the
first page only. Note that Total-Count is the intermediate, unfiltered count of
results, not the number of results returned by this service.

With each response, you can process the HTTP headers to help you display pagination controls:

Header Description

Result-Count This is the number of results that are contained in the current response. It can be less than or
equal to the limit.

Start-Index The Start-Index in the response is equal to the offset specified in the request. With a limit=100,
it will be 0 on the first page, 100 on the second page, etc.

42

Chapter 2 REST v2 - Repository Services

Header Description

Next-Offset This is the offset to request the next page. With forceFullPage=false, the Next-Offset is equiv-
alent to Start-Index+limit, except on the last page. On the the last page, the Next-Offset is
omitted to indicate there are no further pages.

Total-Count This is the total number of results before permissions are applied. This is not the total number
of results for this search by this user, but it is an upper bound. Dividing this number by the limit
gives the number of pages that will be required, though not every page will have the full
number of results.

As described in the previous table, this header only appears on the first response, unless
forceTotalCount=true.

2.1.4.2 Full Page Pagination

Full Page pagination ensures that every page, except the last one, has the same number of results, the number
given by the limit parameter. To do this, JasperReports Server performs extra queries after filtering results for
permission, unitl each page has the full number of results. Though small, the extra queries have a performance
impact and may slow down the request. In addition, your client must read the HTTP header in every response to
determine the offset value for the next page.

For full page pagination, set the pagination parameters of the v2/resources service as follows:

Parameter Type/Value Description

limit integer
default is 100

Specifies the exact number of resources to return in each response. This is
eqivalent to the number of results per page. The default limit is 100. You can
set the limit higher or lower if you want to process larger or smaller pages,
respectively.

offset integer Specifies the overall offset to use for retrieving the next page of resuslts. The
default offset is 0 (first page). For subsequent pages, you must specify the
value given by the Next-Offset header, as described in the next table.

forceFullPage true Setting this paramter to true enables full page pagination. Depending on the
type of search and user permissions, this parameter can cause signifiant per-
formance delays.

forceTotal
Count

do not use When forceFullPage is true, the Total-Count header is set in every
response, even if this parameter is false by default.

With each response, you must process the HTTP headers as follows:

Header Description

Result-Count This is the number of results that are contained in the current response. With full page pag-
ination, it is equal to the limit in every response except for the last page.

43

JasperReports Server Web Services Guide

Header Description

Start-Index The Start-Index in the response is equal to the offset specified in the request. It changes with
every request-response.

Next-Offset The server calculates this value based on the extra queries it performed to fill the page swith
permission-filtered results. In order to avoide duplicate results or skipped results, your client
must read this number and submit it as the offset in the request for the next page. When this
value is omitted from the header, it indicates there are no further pages.

Total-Count This is the total number of results before permissions are applied. This is not the total number
of results for this search by this user, but it is an upper bound.

2.1.4.3 No Pagination

In certain cases, you can turn off pagination. Use this for small search request that you want to process as a
whole, for example a listing of all reports in a folder. In this case, your receive and process all results in a single
response and do not need to implement the logic for pagination. You should only use this for result sets that are
known to be small.

To turn off pagination, set the pagination parameters of the v2/resources service as follows:

Parameter Type/Value Description

limit 0 To return all results without pagination, set limit=0. Do not set limit=0 for
large searches, for example from the root of the repository, because it can
cause significant delays and return a very large number of results.

offset do not use The default offset is 0, which is the start of the single page of results.

forceFullPage do not use This setting has no meaning when there is no limit.

forceTotal
Count

do not use The Total-Count header is included in the first (and only) response. Note
that Total-Count is the intermediate, unfiltered count of results, not the
number of results returned by this service.

With each response, you must process the HTTP headers as follows:

Header Description

Result-Count This is the number of results contained in the current response. Thus, this header indicates
how many results you should process in the single response.

Start-Index This is 0 for a single response containing all the search results.

Next-Offset This header is omitted because there is no next page.

Total-Count This is the total number of results before permissions are applied. It is of little use.

2.1.5 Viewing Resource Details
Use the GET method and a resource URI to request the resource's complete descriptor.

44

Chapter 2 REST v2 - Repository Services

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource

Parameter Type/Value Description

expanded true|false When true, all nested resources will be given as full descriptors. The default
behavior, false, has all nested resources given as references. For more
information, see Viewing Resource Details.

Options

accept: application/json (default)

accept: application/xml

accept: application/repository.folder+<format> (specifically to view the folder resource)

Return Value on Success Typical Return Values on Failure

200 OK – The response will indicate the content-type
and contain the corresponding descriptor, for
example:

application/repository.dataType+json

404 Not Found – The specified resource is not found
in the repository.

2.1.6 Downloading File Resources
There are two operations on file resources:
• Viewing the file resource details to determine the file format
• Downloading the binary file contents

To view the file resource details, specify the URL and the file descriptor type as follows:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/file/resource

Options

accept: application/repository.file+json

accept: application/repository.file+xml

Return Value on Success Typical Return Values on Failure

200 OK – The response will the the file resource
descriptor.

404 Not Found – The specified resource is not found
in the repository.

The type attribute of the file resource descriptor indicates the format of the contents. However, you can also
download the binary file contents directly, with the format indicated by the MIME content-type of the response:

45

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/file/resource

Return Value on Success Typical Return Values on Failure

200 OK – The response content-type will indicate the
MIME type of the binary contents. See for the list of
MIME types that correspond to file resource types.

404 Not Found – The specified resource is not found
in the repository.

2.1.7 Creating a Resource
The POST and PUT methods offer alternative ways to create resources. Both take a resource descriptor but each
handles the URL differently.

With the POST method, specify a folder in the URL, and the new resource ID is created automatically from the
label attribute in its descriptor.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder?<param>

Parameter Type/Value Description

create
Folders

true|false By default, this is true, and the service will create all parent folders if they
don't already exist. When set to false, the folders specified in the URL must
all exist, otherwise the service returns an error.

Content-Type Content

application/repository.

<resourceType>+json

application/repository.

<resourceType>+xml

A well defined descriptor of the specified type and format. See Creating a
Resource

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

With the PUT method, specify a unique new resource ID as part of the URL. For more information, see
Creating a Resource.

46

Chapter 2 REST v2 - Repository Services

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource
?<parameters>

Parameters Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all
exist, otherwise the service returns an error.

overwrite true|false When true, the resource given in the URL is overwritten even if it is a
different type than the resource descriptor in the content. The default is false.

Content-Type Content

application/repository.

<resourceType>+json

application/repository.

<resourceType>+xml

A well defined descriptor of the specified type and format. See Creating a
Resource

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

The POST method also supports a way to create complex resources and their nested resources in a single
multipart request.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder

47

JasperReports Server Web Services Guide

Content-Type Content

multipart/form-data Root resource multipart item name: resource

Root resource multipart Content-type and corresponding item names:
• mondrianConnection:

- schema: mondrian schema XML file
• secureMondrianConnection:

- schema: mondrian schema XML file

- accessGrantSchemas.accessGrantSchema[{itemIndex}]: XML file
• semanticLayerDataSource:

- schema: domain schema XML file

- securityFile: security file XML

- bundles.bundle[{bundleIndex}]: i18n properties file
• reportUnit

- jrxml: report unit JRXML file

- files.{fileName}: report unit attached resource file (e.g. images)

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

2.1.8 Modifying a Resource
Use the PUT method above to overwrite an entire resource. Specify the path of the target resource in the URL
and specify resource of the same type. Use overwrite=true to replace a resource of a different type.

The resource descriptor must completely describe the updated resource, not use individual fields. The descriptor
must also use only references for nested resources, not other resources expanded inline. You can update the local
resources using the hidden folder _file. For more informations, see Modifying a Resource.

In JasperReports Server 5.5, Jaspersoft introduces a new method for modifying resoures. The PATCH method
updates individual descriptor fields on the target resource. It also accept expressions that modify the descriptor
in the Spring Expression Language. This expression language lets you easily modify the structure and values of
descriptors.

Method URL

PATCH http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource

48

Chapter 2 REST v2 - Repository Services

Content-Type Content

application/json {
"version" : 0,
"patch":[

{
"field":"label",
"value":"New Label"

},
{

"field":"query",
"value":"/path/to/query/resource"

},
{

"expression":"inputControls.add(new com.jaspersoft.
jasperserver.dto.resources.ClientReference().
setUri('/datatypes/decorate'))"

}
]

}

application/xml <patchItems>
<version>0</version>
<patch>

<field>label</field>
<value>New Label</value>

</patch>
<patch>

<field>query</field>
<value>/path/to/query/resource</value>

</patch>
<patch>

<expression>inputControls.add(new com.jaspersoft.
jasperserver.dto.resources.ClientReference().
setUri('/datatypes/decorate'))

</expression>
</patch>

</patchItems>

Return Value on Success Typical Return Values on Failure

For confirmation, the response contains the full descriptor of
the resource that was just modified.

400 Bad Request – Mismatch between the
patch fields and the fields or syntax of the
actual descriptor.

409 Conflict – Old version number; the
resource was updated more recently than the
last version number received.

The patch descriptor contains attributes of the target resource. It can't be used to specify the attributes of nested
resources. However, you can apply the patch operation directly to the local resource in the hidden _files folder.

If your client does not support the PATCH method, use the POST method and specify the following HTTP
header:

X-HTTP-Method-Override: PATCH

49

JasperReports Server Web Services Guide

2.1.9 Copying a Resource
Copying a resource uses the Content-Location HTTP header to specify the source of the copy operation. If any
resource descriptor is sent in the request, it is ignored.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder
?<parameters>

Parameters Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all
exist, otherwise the service returns an error.

overwrite true|false When true, the target resource given in the URL is overwritten even if it is a
different type than the resource descriptor in the content. The default is false.

Options

Content-Location: {resourceSourceUri} - Specifies the resource to be copied.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just copied.

404 Not Found – When the {resourceSourceUri} is not
valid.

2.1.10 Moving a Resource
Moving a resource uses the PUT method, whereas copying it uses the POST method.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder
?<parameters>

Parameters Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all
exist, otherwise the service returns an error.

overwrite true|false When true, the target resource given in the URL is overwritten even if it is a
different type than the resource descriptor in the content. The default is false.

50

Chapter 2 REST v2 - Repository Services

Options

Content-Location: {resourceSourceUri} - Specifies the resource to be moved.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just moved.

404 Not Found – When the {resourceSourceUri} is not
valid.

2.1.11 Uploading File Resources
There are several ways of uploading file contents to create file resources. The simplest way is to POST a file
descriptor containing the file in base64 encoding.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder?<param>

Parameters Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all
exist, otherwise the service returns an error.

Content-Type Content

application/repository.

file+json

application/repository.

file+xml

A well defined file resource descriptor, as described in Uploading File
Resources. The contents of the file are base64 encoded in the content
attribute of the descriptor.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

You can also create a file resource with a multipart form request.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder

51

JasperReports Server Web Services Guide

Content-Type Content

multipart/form-data The request should include the following parameters:
• label contains {fileLabel}
• description contains {fileDescription}
• type contains {fileType}
• data contains {fileContent}

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

Another form allows you to create a file resource by direct streaming, without needing to create it first as a
descriptor object. In this case, the required fields of the file descriptor are specified in HTTP headers.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder?<param>

Options

Content-Description: {fileResourceDescription}

Content-Disposition: attachment; filename={fileResourceLabel}

Content-Type Content

{MIME type} The MIME type that corresponds to the desired file type. The body then
contains the binary data representation of that file format.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor
of the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

When using MIME types, you must specify the MIME type that corresponds with the desired file type, as
shown in the following table.

File Descriptor Types Corresponding MIME Types

pdf application/pdf

html text/html

xls application/xls

52

Chapter 2 REST v2 - Repository Services

File Descriptor Types Corresponding MIME Types

rtf application/rtf

csv text/csv

ods application/vnd.oasis.opendocument.spreadsheet

odt application/vnd.oasis.opendocument.text

txt text/plain

docx application/vnd.openxmlformats-
officedocument.wordprocessingml.document

xlsx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

font font/*

img image/*

jrxml application/jrxml

jar application/zip

prop application/properties

jrtx application/jrtx

xml application/xml

css text/css

accessGrantSchema application/accessGrantSchema

olapMondrianSchema application/olapMondrianSchema

You can cusomize this list of MIME types in the server by editing the contentTypeMapping map in the file
.../WEB-INF/applicationContext-rest-services.xml. You can change MIME types for predefined types, add MIME
types, or add custom types.

2.1.12 Deleting Resources
The DELETE method has two forms, one for single resources and one for multiple resources.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource

53

JasperReports Server Web Services Guide

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful and
there is no descriptor to return.

404 Not Found – When the resource path or ID is not
valid.

To delete multiple resources at once, specify multiple URIs with the resourceUri parameter.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/resources?resourceUri={uri]&...

Parameter Type/Value Description

resourceURI string Specifies a resource to delete. Repeat this paramter to delete multiple
resources.

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful and
there is no descriptor to return.

404 Not Found – When the {resourceUri} is not valid.

2.2 The v2/domains/metadata Service

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

The REST v2/domains/metadata service gives access to the sets and items exposed by a Domain for use in Ad
Hoc reports. Items are database fields exposed by the Domain, after all joins, filters, and calculated fields have
been applied to the database tables selected in the Domain. Sets are groups of items, arranged by the Domain
creator for use by report creators.

A limitation of the v2/domains/metadata service only allows it to operate on Domains with a single data
island. A data island is a group of fields that are all related by joins between the database tables in the
Domain. Fields that belong to tables that are not joined in the Domain belong to separate data islands.

If your Domain contains localization bundles you can specify a locale and an optional alternate locale and
preference (called q-value, a decimal between 0 and 1).

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/domains/path/to/Domain/metadata

54

Chapter 2 REST v2 - Repository Services

Options

Accept-Language: <locale>[, <alt-locale>;q=0.8]

Accept: application/xml (default)

Accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body is XML containing the list of
resourceDescriptors.

404 Not Found – The specified Domain URI is not
found in the repository. This service also returns an
XML errorDescriptor giving a human-readable
error message.

The response of the v2/domains/metadata service is an XML or JSON structure that describes the sets and items
available in the selected Domain. This metadata includes the localized labels for the sets and items, as well as
the datatypes of the items. The resourceId of the sets and items are internal to the Domain and not
meaningful or otherwise useable.

For more information about Domains, refer to the JasperReports Server User Guide.

The following example shows the JSON response for a Domain with:
• A set named expense containing:

• An item named Exp Date of type Date
• An item named Amount of type BigDecimal

• A set named store containing:
• An item named Store Type of type String
• ...

{
"rootLevel": {

"id":"root",
"subLevels":[

{
"id":"expense_join",
"label":"expense",
"properties": {

"resourceId": "expense_join"
},
"items":[

{
"id":"ej_expense_fact_exp_date",
"label":"Exp Date",
"properties": {

"JavaType": "java.sql.Date",
"resourceId": "expense_join.e.exp_date"

}
},
{

"id":"ej_expense_fact_amount",
"label":"Amount",
"properties": {

55

JasperReports Server Web Services Guide

"JavaType": "java.math.BigDecimal",
"resourceId": "expense_join.e.amount"

}
}

]
},
{

"id":"expense_join_store",
"label":"store",
"properties": {

"resourceId":"expense_join"
},
"items":[

{
"id":"ej_store_store_type",
"label":"Store Type",
"properties": {

"JavaType": "java.lang.String",
"resourceId": "expense_join.s.store_type"

}
},
...

]
}

]
}

}

The following example shows the same Domain as returned by the v2/domains/metadata service in XML
format:

<?xml version="1.0" encoding="UTF-8"?>
<domainMetadata>

<rootLevel>
<id>root</id>
<subLevels>

<subLevel>
<id>expense_join</id>
<label>expense</label>
<properties>

<entry>
<key>resourceId</key>
<value>expense_join</value>

</entry>
</properties>
<items>

<item>
<id>ej_expense_fact_exp_date</id>
<label>Exp Date</label>
<properties>

<entry>
<key>JavaType</key>
<value>java.sql.Date</value>

</entry>

56

Chapter 2 REST v2 - Repository Services

<entry>
<key>resourceId</key>
<value>expense_join.e.exp_date</value>

</entry>
</properties>

</item>
<item>

<id>ej_expense_fact_amount</id>
<label>Amount</label>
<properties>

<entry>
<key>JavaType</key>
<value>java.math.BigDecimal</value>

</entry>
<entry>

<key>resourceId</key>
<value>expense_join.e.amount</value>

</entry>
</properties>

</item>
</items>

</subLevel>
<subLevel>

<id>expense_join_store</id>
<label>store</label>
<properties>

<entry>
<key>resourceId</key>
<value>expense_join</value>

</entry>
</properties>
<items>

<item>
<id>ej_store_store_type</id>
<label>Store Type</label>
<properties>

<entry>
<key>JavaType</key>
<value>java.lang.String</value>

</entry>
<entry>

<key>resourceId</key>
<value>expense_join.s.store_type</value>

</entry>
</properties>

</item>
...

</items>
</subLevel>

</subLevels>
</rootLevel>

</domainMetadata>

.

57

JasperReports Server Web Services Guide

2.2.1 Working with Domain Schemas
The v2/domains/metadata service returns only the display information about a Domain, not its internal
definition. The fields, joins, filters, and calculated fields that define the internal structure of a Domain make up
the Domain design. The XML representation of a Domain design is called the Domain schema.

Currently, there is no REST service to interact with Domain schemas, but you can use the v2/resources service
to retrieve the raw schema. First, retrieve the resource descriptor for the Domain. For example, to view the
descriptor for the Supermart Domain, use the following request (when logged in as jasperadmin):

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain

This descriptor contains the Domain schema as an internal resource:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<semanticLayerDataSource>

<creationDate>2013-10-10 15:30:31</creationDate>
<description>Comprehensive example of Domain (pre-joined table sets for complex reporting, custom

query based dataset, column and row security, I18n bundles)</description>
<label>Supermart Domain</label>
<permissionMask>1</permissionMask>
<updateDate>2013-10-10 15:30:31</updateDate>
<uri>/organizations/organization_1/Domains/supermartDomain</uri>
<version>1</version>
<dataSourceReference>

<uri>/organizations/organization_1/analysis/datasources/FoodmartDataSourceJNDI</uri>
</dataSourceReference>
<bundles>

<bundle>
<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_

domain.properties</uri></fileReference>
<locale></locale>

</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_
domain_en_US.properties</uri></fileReference>

<locale>en_US</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_
domain_de.properties</uri></fileReference>

<locale>de</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_
domain_fr.properties</uri></fileReference>

<locale>fr</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_
domain_es.properties</uri></fileReference>

<locale>es</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_
domain_ja.properties</uri></fileReference>

<locale>ja</locale>

58

Chapter 2 REST v2 - Repository Services

</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/supermart_
domain_zh_CN.properties</uri></fileReference>

<locale>zh_CN</locale>
</bundle>

</bundles>
<schemaFileReference>

<uri>/organizations/organization_1/Domains/supermartDomain_files/supermartDomain_schema</uri>
</schemaFileReference>
<securityFileReference>

<uri>/organizations/organization_1/Domains/supermartDomain_files/supermartDomain_domain_secu-
rity</uri>

</securityFileReference>
</semanticLayerDataSource>

Use the following request to access the Domain schema file inside the Domain resource:

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain_
files/supermartDomain_schema

The Domain schema is an XML file with a structure explained in the JasperReports Server User Guide. If you
wish to modify the schema programmatically, you must write your own parser to access its fields and
definitions. You can then replace the schema file in the Domain with one of the file updating methods
described in .

2.2.2 Accessing Domain Bundles and Security Files
Once you have the descriptor of a Domain resource as shown in the previous section, you can access the other
files that help define a Domain. For example, you can access the language bundles of the Supermart Domain
with the following request:

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain_files/supermart_
domain_<locale>.properties

Language bundles are Java properties files that follow the language bundle naming convention, and that contain
the names of the sets and fields in the language of the locale in the filename.

You can also retrieve the localized set and item names by specifying Accept-Language when using the
v2/domains/metadat service. However, by accessing the language bundles through the Domain descriptor, you
read the default bundle to see the pattern of keys and values, and then create a bundle for a new locale.

Domains may also contain a security file that is also stored as an internal resource of the Domain descriptor. Use
the following example to request the security file of the Supermart Domain in the sample data:

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain_files/supermart_
domain_security

A security file defines a complex set of access permissions to the data in the rows and columns returned by the
Domain, based on the username, roles, or profile attributes of the user running a Domain-based report. As with
the Domain schema file, you must write your own parser to interpret this file and modify it.

You can then upload an updated language bundle or security file for the Domain with one of the methods
described in .

For more information about language bundles and security files in Domains, see the JasperReports Server User
Guide.

59

JasperReports Server Web Services Guide

2.3 The v2/permissions Service
In the REST v2/permissions service, the syntax is expanded so that you can specify the resource, the recipient
(user name or role name) and the permission value within the URL. This makes it simpler to set permissions
because you don’t need to send a resource descriptor to describe the permissions. In order to set, modify, or
delete permissions, you must use credentials or login with a user that has “administer” permissions on the target
resource.

The permissions for each user and each role are indicated by the following values. These values are not a true
mask; they should be treated as constants:

• No access: 0
• Administer: 1
• Read-only: 2
• Read-write: 6
• Read-delete: 18
• Read-write-delete: 30
• Execute-only: 32

Because a permission can apply to either a user or a role, the permissions service uses the concept of a
“recipient.” A recipient specifies whether the permission applies to a user or a role, and gives the ID of the user
or role, including any organization, for example:

role:/ROLE_SUPERUSER

user:/organization_1/joeuser

Recipients are listed when viewing permissions, and they are also used to set a permission. A recipient can be
used in the URL when allowed, but in this case, the forward slash (/) characters must be encoded as %2F.

There are two qualities of a permission:
• The assigned permission is one that is set explicitly for a given resource and a given user or role. Not all

permissions are assigned, in which case the permission is inherited from the parent folder.
• The effective permission is the permission that is being enforced, whether it is assigned or inherited.

There is one permission that is not defined: you cannot read or write the ROLE_SUPERUSER's
permission on the root .

2.3.1 Viewing Multiple Permissions
The GET method of the v2/permissions service lists permissions on a given resource according to several
arguments.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource/?<arguments>

Argument Type/Value Description

effective
Permissions

boolean
optional

When set to true, the effective permissions are returned. By default, this
argument is false and only assigned permissions are returned.

60

Chapter 2 REST v2 - Repository Services

recipientType String
optional

Either user or role. When not specified, the recipient type is the role.

recipientId String
optional

Id of the user or role. In environments with multiple organizations, specify the
the organization as %2F<orgID>%2F<recipientID>

resolveAll boolean
optional

When set to true, shows the effective permissions for all users and all roles.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body describes the requested
permissions for the resource.

400 Bad Request – When the recipient type is invalid.
404 Not Found – When the specified resource URI is
not found in the repository or the recipient ID cannot
be resolved.

For example, the following request shows all permission for a resource, similar to the permissions dialog in the
user interface:

GET http://localhost:8080/jasperserver-pro/rest_v2/permissions/public?resolveAll=true

<permissions>
<permission>
<mask>0</mask>
<recipient>user:/anonymousUser</recipient>

</permission>
<permission>
<mask>0</mask>
<recipient>user:/organization_1/CaliforniaUser</recipient>

</permission>
...
<permission>
<mask>2</mask>
<recipient>role:/ROLE_USER</recipient>
<uri>/public</uri>

</permission>
</permissions>

2.3.2 Viewing a Single Permission
Specify the recipient in the URL to see a specific assigned permission. To view effective permissions, use the
form above.

61

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource;recipient=
<recipient>

Argument Type/Value Description

recipient string
required

The recipient format specifies user or role, the organization if necessary,
and the object ID. The slash characters must be encoded, for example:

user:%2Forganization_1%2Fjoeuser

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body describes the requested
permission.

404 Not Found – When the specified resource URI or
recipient is invalid.

2.3.3 Setting Multiple Permissions
The POST method assigns any number of permissions to any number of resources specified in the body of the
request. All permissions must be newly assigned, and the request will fail if a recipient already has an assigned
(not inherited) permission. Use the PUT method to update assigned permissions.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions

Content-Type Content

application/collection+json A JSON object that describes a set of permissions, for example:

{
"permission" :[
{
"uri":"/properties",
"recipient":"role:/ROLE_USER",
"mask":"1"
},
{
"uri":"/properties",
"recipient":"role:/ROLE_ADMIN",
"mask":"32"
}

]}

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful. 400 Bad Request – A permission is already assigned
or the given permission mask is invalid.

62

Chapter 2 REST v2 - Repository Services

The PUT method modifies exiting permissions (already assigned).

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource

Content-Type Content

application/collection+json A JSON object that describes a set of permissions. Because a single resource
is specified in the URL, all permissions apply to the same resource, and the
server ignores the uri field in the JSON object.

{
"permission" :[
{
"uri":"/foo",
"recipient":"role:/organization_1/ROLE_MANAGER",
"mask":"30"
},
{
"uri":"/bar",
"recipient":"user:/organization_1/joeuser",
"mask":"32"
}

]}

Return Value on Success Typical Return Values on Failure

200 OK – The request was successful. 400 Bad Request – If a recipient or mask is
invalid.

404 Not Found – If the resource in the URL is
invalid.

2.3.4 Setting a Single Permission
The POST method accepts a single permission descriptor.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions

Content-Type Content

application/json A JSON object that describes a single permission on a single resource, for
example:

{
"uri":"/properties",
"recipient":"role:/ROLE_USER",
"mask":"1"

}

63

JasperReports Server Web Services Guide

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful. 400 Bad Request – The permission is already
assigned or the given mask is invalid.

The PUT method accepts a resource and recipient in the URL.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource;recipient=
<recipient>

Argument Type/Value Description

recipient string
required

The recipient format specifies user or role, the organization if necessary,
and the object ID. The slash characters must be encoded, for example:

user:%2Forganization_1%2Fjoeuser

Content-Type Content

application/json A JSON object that describes only the mask, for example:

{
"uri": null,
"recipient": null,
"mask":"2"

}

Return Value on Success Typical Return Values on Failure

200 OK – The request was successful, and the
response body contains the single permission that
was modified.

400 Bad Request – If the mask is invalid.

404 Not Found – If the resource or the recipient in the
URL is invalid.

2.3.5 Deleting Permissions in Bulk
The DELETE method removes all assigned permissions from the designated resource. After returning
successfully, all effective permissions for the resource are inherited.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful. 404 Not Found – If the resource in the URL is invalid.

2.3.6 Deleting a Single Permission
Specify a recipient in the URL of the DELETE method to remove only that permission.

64

Chapter 2 REST v2 - Repository Services

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource;recipient=
<recipient>

Argument Type/Value Description

recipient string
required

The recipient format specifies user or role, the organization if necessary,
and the object ID. The slash characters must be encoded, for example:

user:%2Forganization_1%2Fjoeuser

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful. 404 Not Found – If the resource or the recipient in the
URL is invalid.

2.4 The v2/export Service
The export service works asynchronously: first you request the export with the desired options, then you
monitor the state of the export, and finally you request the output file. Each step requires a different service call.
You must be authenticated as the system admin (superuser) for the export services.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/export/

Content-Type Content

application/json A JSON object that describes the export options.

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that gives the ID of
the started export operation.

401 Unauthorized – Export is available only to the
system admin user (superuser).

The content to send describes the export options, for example:

{
roles: ["ROLE_USER","organization_1|ROLE_MANAGER"],
users: ["jasperadmin","organization_1|joe"],
uris: ["path/to/resource/1", "organizations/organization_1/path/to/resource/2"]
parameters: ["role-users", "repository-permissions"]

}

As shown above, commercial editions must use the organization syntax for all roles, users, and URIs. The
following table describes the export parameters:

65

JasperReports Server Web Services Guide

Export Options

everything Export everything except audit and monitoring: all repository
resources, permissions, report jobs, users, roles, and server settings.

role-users When this option is present, each role export triggers the export of all
users belonging to the role. This option should only be used if roles
are specified

repository-permissions When this option is present, repository permissions are exported
along with each exported folder and resource. This option should
only be used if uris are specified.

include-access-events When this option is present, access events (date, time, and user
name of last modification) are exported along with each exported
folder and resource. This option should only be used if uris are
specified.

include-audit-events Include audit data for all resources and users in the export. The audit
feature must be enabled in the server configuration.

include-monitoring-events Include monitoring events. The monitoring feature must be enabled in
the server configuration.

The body of the response contains the ID of the export operation needed to check its status and later download
the file:

{
id: "njkhfs8374",
state: {
phase: "inprogress",
message: "Progress..."

}
}

2.4.1 Checking the Export State
After receiving the export ID, you can check the state of the export operation.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/export/<export-id>/state

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that gives the
current state of the export operation.

404 Not Found – When the specified export ID is not
found.

The body of the response contains the current state of the export operation:

66

Chapter 2 REST v2 - Repository Services

{
phase: "inprogress",
message: "Progress..."

}

{
phase: "ready",
message: "Ready!"

}

{
phase: "failure",
message: "Not enough space on

disk"
}

2.4.2 Fetching the Export Output
When the export state is ready, you can download the zip file containing the export catalog.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/export/<export-id>/<fileName>

Return Value on Success Typical Return Values on Failure

200 OK – Returns the exported catalog as a zip file
with the given <fileName>.

404 Not Found – When the specified export ID is not
found.

2.5 The v2/import Service
Use the following service to upload a catalog as a zip file and import it with the given options. Specify options
as arguments in the format <argument>=true. Arguments that are omitted are assumed to be false. You must be
authenticated as the system admin (superuser) for the import service.

Jaspersoft does not recommend uploading files greater than 2 gigabytes.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/import?<arguments>

Argument Value Description

update? true Resources in the catalog replace those in the repository if their URIs
and types match.

skipUserUpdate? true When used with update=true, users in the catalog are not imported or
updated. Use this option to import catalogs without overwriting currently
defined users.

includeAccess
Events?

true Restores the date, time, and user name of last modification if they are
included in the catalog to import.

includeAudit
Events?

true Imports audit events if they are included in the catalog.

67

JasperReports Server Web Services Guide

includeMonitoring
Events?

true Imports audit events if they are included in the catalog.

includeServer
Setting?

true Imports server settings if they are included in the catalog.

Content-Type Content

application/zip The catalog file to import.

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that indicates the import
was a success.

401 Unauthorized – Import is available only to the
system admin user (superuser).

The body of the response indicates the success of the import:

{
phase: "ready",
message: "Ready!"

}

68

CHAPTER 3 REST V2 - REPORT SERVICES
For authentication using the REST web services, see 1.2, “REST Authentication,” on page 12.

This chapter includes the following sections:
• The v2/reports Service
• The v2/reportExecutions Service
• The v2/inputControls Service
• The v2/options Service
• The v2/jobs Service
• The v2/queryExecutor Service
• The v2/caches Service

3.1 The v2/reports Service
The rest_v2/reports service reimplements the functionality of the rest/report service. The new service simplifies
the API for obtaining report output, such as PDF and XLS. The new service also provides more functionality to
interact with running reports, report options, and input controls.

3.1.1 Running a Report
The new v2/reports service allows clients to receive report output in a single request-response. The output
format is specified in the URL as a file extension to the report URI.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/
path/to/report.<format>?<arguments>

Argument Type/Value Description

<format> output
type

One of the following formats: pdf, html, xls, xlsx, rtf, csv, xml, docx, odt, ods,
jprint.

page? Integer > 0 An integer value used to export a specific page

69

JasperReports Server Web Services Guide

<inputControl> String Any input control that is defined for the report. Input controls that are multi-
select may appear more than once. See examples below.

interactive? Boolean In a commercial editions of the server where HighCharts are used in the
report, this property determines whether the JavaScript necessary for
interaction is generated when exporting to HTML. By default it is true. If set to
false, the chart is generated as a non-interactive image file.

onePage
PerSheet?

Boolean Valid only for the XLS format. When true, each page of the report is on a
separate spreadsheet. When false or omitted, the entire report is on a single
spreadsheet. If your reports are very long, set this argument to true,
otherwise the report will not fit on a single spreadsheet and cause an error.

baseUrl String Specifies the base URL that the report will use to load static resources such
as JavaScript files. You can also set the deploy.base.url property in the
WEB-INF/js.config.properties file to set this value permanently. If both are set,
the baseUrl parameter in this request takes precedence.

Return Value on Success Typical Return Values on Failure

200 OK – The content is the requested file. 404 Not Found – When the specified report URI is not
found in the repository.

The follow examples show various combinations of formats, arguments, and input controls:

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.html (all pages)

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.html?page=43

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.pdf (all pages)

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.pdf?page=1

http://<host>:<port>/jasperserver[-pro]/rest_
v2/reports/reports/samples/EmployeeAccounts.html?EmployeeID=sarah_id

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/Cascading_multi_select_report.html?
Country_multi_select=USA&Cascading_state_multi_select=WA&Cascading_state_multi_select=CA

JasperReports Server does not support exporting Highcharts charts with background images to PDF,
ODT, DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have
background images to these formats, the background image is removed from the chart. The data in the
chart is not affected.

3.1.2 Finding Running Reports
The new v2/reports service provides functionality to stop reports that are running. Reports can be running from
user interaction, web service calls, or scheduling. The following method provides several ways to find reports
that are currently running, in case the client wants to stop them.

This syntax of the v2/reports service is deprecated. See “The v2/reportExecutions Service” on
page 72.

70

Chapter 3 REST v2 - Report Services

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports?<arguments>

Argument Type/Value Description

jobID? String Find the running report based on its jobID in the scheduler.

jobLabel? String Find the running report based on its jobLabel in the scheduler.

userName? String Name of user who has scheduled a report, in the format
<username>%7C<organizationID>. The |<organizationID> is required for all
users except system admins (superuser).

fireTime
From?

date/time Date and time in the following pattern: yyyy-MM-dd'T'HH:mmZ. Together,
these arguments create a time range to find when the running report was
started. Both of the range limits are inclusive. Either argument may be null to
signify an open-ended range.fireTimeTo? date/time

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of execution IDs that
can be used for cancellation.

404 Not Found – When the specified report URI is not
found in the repository.

For security purposes, the search for running reports is has the following restrictions:
• The system administrator (superuser) can see and cancel any report running on the server.
• An organization admin (jasperadmin) can see every running report, but can cancel only the reports that

were started by a user of the same organization or one of its child organizations.
• A regular user can see every running report, but can cancel only the reports that he initiated.

3.1.3 Terminate Running Report
Use the following method to stop a running report, as found with the previous method.

This syntax of the v2/reports service is deprecated. See “The v2/reportExecutions Service” on
page 72.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<executionID>/status/

Content-Type Content

application/xml Either an empty instance of the ReportExecutionCancellation class or

<status>cancelled</status>.

71

JasperReports Server Web Services Guide

Return Value on Success Typical Return Values on Failure

200 OK – The content also contains:
<status>cancelled</status>.

204 No Content – When the specified execution ID is
not found on the server, and the response body is
empty.

3.2 The v2/reportExecutions Service
The v2/reports service allows clients to easily run a report, wait for the reply, and receive the output. This is
called synchronous report execution because the client must wait for the response. When managing large reports
that may take minutes to complete, or when running a large number of reports simultaneously, sychronous report
execution slows down the client or uses many threads, each waiting for a report.

The v2/reportExecutions service provides asynchronous report execution, so that the client does not need to
wait for report output. Instead, the client obtains a reqest ID and periodicallychecks the status of the report to
know when it is ready. When the report is finished, the client can download the output. The client can also
send an asynchronous request for other export formats (PDF, Excel, and others) of the same report. Again the
client can check the status of the export and download the result when the export has completed.

Reports being scheduled on the server also run asynchronously, and the v2/reportExecutions allows you to
access jobs that are triggered by the scheduler. Finally, the v2/reportExecutions service allows the client to stop
any report execution or job that has been triggered.

3.2.1 Running a Report Asynchronously
In order to run a report asynchronously, the v2/reportExecutions service provides a method to specify all the
parameters needed to launch a report. Report parameters are all sent as a reportExecutionRequest object. The
response from the server contains the request ID needed to track the execution until completion.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions

Content-Type Content

application/xml

application/json

A complete ReportExecutionRequest in either XML or JSON format. See
the example and table below for an explanation of its properties.

Return Value on Success Typical Return Values on Failure

200 OK – The content contains a ReportExecution
descriptor. See below for an example

403 Forbidden – When the logged-in user does not
have permission to access the report in the request.

404 Not Found – When the report URI specified in the
request does not exist.

The following example shows the structure of the ReportExecutionRequest:

72

Chapter 3 REST v2 - Report Services

<reportExecutionRequest>
<reportUnitUri>/supermart/details/CustomerDetailReport</reportUnitUri>
<async>true</async>
<freshData>false</freshData>
<saveDataSnapshot>false</saveDataSnapshot>
<outputFormat>html</outputFormat>
<interactive>true</interactive>
<ignorePagination>false</ignorePagination>
<pages>1-5</pages>
<parameters>

<reportParameter name="someParameterName">
<value>value 1</value>
<value>value 2</value>

</reportParameter>
<reportParameter name="someAnotherParameterName">

<value>another value</value>
</reportParameter>

</parameters>
</reportExecutionRequest>

The following table describes the properties you can specify in the ReportExecutionRequest:

Property Required or
Default

Description

reportUnitUri Required Repository path (URI) of the report to run. For commercial editions
with organizations, the URI is relative the the logged-in user’s
organization.

outputFormat Required Specifies the desired output format: pdf, html, xls, xlsx, rtf, csv, xml,
docx, odt, ods, jprint.

freshData false When data snapshots are enabled, specifies whether the report
should get fresh data by querying the data source or if false, use a
previously saved data snapshot (if any). By default, if a saved data
snapshot exists for the report it will be used when running the
report.

saveDataSnapshot false When data snapshots are enabled, specifies whether the data
snapshot for the report should be written or overwritten with the
new data from this execution of the report.

interactive true In a commercial editions of the server where HighCharts are used
in the report, this property determines whether the JavaScript
necessary for interaction is generated and returned as an
attachment when exporting to HTML. If false, the chart is generated
as a non-interactive image file (also as an attachment).

Table 3-1 Report Execution Properties

73

JasperReports Server Web Services Guide

Property Required or
Default

Description

ignorePagination Optional When set to true, the report is generated as a single long page.
This can be used with HTML output to avoid pagination. When
omitted, the ignorePagination property on the JRXML, if any, is
used.

pages Optional Specify a page range to generate a partial report. The format is
<startPageNumber>-<endPageNumber>

async false Determines whether reportExecution is synchronous or
asynchronous. When set to true, the response is sent immediately
and the client must poll the report status and later download the
result when ready. By default, this property is false and the
operation will wait until the report execution is complete, forcing the
client to wait as well, but allowing the client to download the report
immediately after the response.

transformerKey Optional Advanced property used when requesting a report as a JasperPrint
object. This property can specify a JasperReports Library generic
print element transformers of class
net.sf.jasperreports.engine.export. GenericElementTransformer.
These transformers are pluggable as JasperReports. extensions

attachmentsPrefix attachments For HTML output, this property specifies the URL path to use fo
downloading the attachment files (JavaScript and images). The full
path of the default value is:

{contextPath}/rest_v2/reportExecutions/{reportExecutionId}/exports/
{exportExecutionId}/attachments/

You can specify a different URL path using the placeholders
{contextPath}, {reportExecutionId} and {exportExecutionId}.

baseURL String Specifies the base URL that the report will use to load static
resources such as JavaScript files. You can also set the
deploy.base.url property in the WEB-INF/js.config.properties file to
set this value permanently. If both are set, the baseUrl parameter in
this request takes precedence.

parameters A list of input control parameters and their values.

When successful, the reply from the server contains the reportExecution descriptor. This descriptor contains
the request ID and status needed in order for the client to request the output. There are two statuses, one for the
report execution itself, and one for the chosen output format. The following descriptor shows that the report is
still executing (<status>execution</status>).

<reportExecution>
<currentPage>1</currentPage>
<exports>

<export>

74

Chapter 3 REST v2 - Report Services

<id>html</id>
<status>queued</status>

</export>
</exports>
<reportURI>/supermart/details/CustomerDetailReport</reportURI>
<requestId>f3a9805a-4089-4b53-b9e9-b54752f91586</requestId>
<status>execution</status>

</reportExecution>

The value of the async property in the request determines whether or not the report output is available when
the response is received. Your client should implement either synchronous or asynchronous processing of the
response depending on the value you set for the async property.

3.2.2 Polling Report Execution
When requesting reports asynchronously, use the following method to poll the status of the report execution.
The request ID in the URL is the one returned in the reportExecution descriptor. As of JasperReports Server
5.6, this service supports the extended status value that includes an appropriate message.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/status/

Options Sample Return Value

accept: application/xml
(default)

<status>ready</status>

accept:
application/status+xml

<status>
<errorDescriptor>

<errorCode>input.controls.validation.error</errorCode>
<message>Input controls validation failure</message>
<parameters>

<parameter>Specify a valid value for type Integer.
</parameter>

</parameters>
</errorDescriptor>
<value>failed</value>

</status>

accept: application/json { "value": "ready" }

accept:
application/status+json

{
"value": "failed",
"errorDescriptor": {

"message": "Input controls validation failure",
"errorCode": "input.controls.validation.error",
"parameters": ["Specify a valid value for type Integer."]

}
}

75

JasperReports Server Web Services Guide

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the report status, as shown
above. In the extened format, error reports contain error
messages suitable for display.

404 Not Found – When the specified request ID
does not exist.

3.2.3 Requesting Report Execution Details
Once the report is ready, your client must determine the names of the files to download by requesting the
reportExecution descriptor again. Specify the requestID in the URL as follows:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID

Options

accept: application/xml

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content contains a ReportExecution
descriptor. See below for an example.

404 Not Found – When the request ID specified in the
request does not exist.

The report execution descriptor now contains the list of exports for the report, including the report output itself
and any other file attachments. File attachments such as images and JavaScript occur only with HTML export.

{
"status": "ready",
"totalPages": 47,
"requestId": "b487a05a-4989-8b53-b2b9-b54752f998c4",
"reportURI": "/reports/samples/AllAccounts",
"exports": [{

"id": "195a65cb-1762-450a-be2b-1196a02bb625",
"options": {

"outputFormat": "html",
"attachmentsPrefix": "./images/",
"allowInlineScripts": false

},
"status": "ready",
"outputResource": {

"contentType": "text/html"
},
"attachments": [{

"contentType": "image/png",
"fileName": "img_0_46_0"

},
{

"contentType": "image/png",

76

Chapter 3 REST v2 - Report Services

"fileName": "img_0_0_0"
},
{

"contentType": "image/jpeg",
"fileName": "img_0_46_1"

}]
},
{

"id": "4bac4889-0e63-4f09-bbe8-9593674f0700",
"options": {

"outputFormat": "html",
"attachmentsPrefix": "{contextPath}/rest_v2/reportExecutions/{reportExecutionId}/exports/

{exportExecutionId}/attachments/",
"baseUrl": "http://localhost:8080/jasperserver-pro",
"allowInlineScripts": true

},
"status": "ready",
"outputResource": {

"contentType": "text/html"
},
"attachments": [{

"contentType": "image/png",
"fileName": "img_0_0_0"

}]
}]

}

3.2.4 Requesting Report Output
After requesting a report execution and waiting synchronously or asynchronously for it to finish, your client is
ready to download the report output.

Every export format of the report has an ID that is used to retrieve it. For example, the HTML export in the
previous example has the ID 195a65cb-1762-450a-be2b-1196a02bb625. To download the main report output,
specify this export ID in the following method:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_
v2/reportExecutions/requestID/exports/exportID/outputResource

Response Header Description

output-final As of JasperReports Server 5.6, this value indicates whether the out put is in
its final form or not. When false, report items such as total page count are not
finalized, but output is available early. You should reload the output
resource again until this value is true.

Return Value on Success Typical Return Values on Failure

200 OK – The content is the main output of the report,
in the format specified by the contentType property
of the outputResource descriptor, for example:
text/html

404 Not Found – When the request ID specified in the
request does not exist.

77

JasperReports Server Web Services Guide

For example, to download the main HTML of the report execution response above, use the following URL:

GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/b487a05a-4989-8b53-b2b9-
b54752f998c4/exports/195a65cb-1762-450a-be2b-1196a02bb625/outputResource

JasperReports Server does not support exporting Highcharts charts with background images to PDF,
ODT, DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have
background images to these formats, the background image is removed from the chart. The data in the
chart is not affected.

To download file attachments for HTML output, use the following method. You must download all attachments
to display the HMTL content properly. The given URL is the default path, but it can be modified with the
attachmentsPrefix property in the reportExecutionRequest, as described in Table 3-1, “Report Execution
Properties,” on page 73.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_
v2/reportExecutions/requestID/exports/exportID/attachments/fileName

Return Value on Success Typical Return Values on Failure

200 OK – The content is the attachment in the format
specifiedin the contentType property of the
attachment descriptor, for example:
image/png

404 Not Found – When the request ID specified in the
request does not exist.

For example, to download the one of the images for the HTML report execution response above, use the
following URL:

GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/html/attachments/img_0_46_0

3.2.5 Exporting a Report Asynchronously
After running a report and downloading its content in a given format, you can request the same report in other
formats. As with exporting report formats through the user interface, the report does not run again because the
export process is independent of the report.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/exports/

78

Chapter 3 REST v2 - Report Services

Content-Type Content

application/xml

application/json

Send an export descriptor in either XML or JSON format to specify the format
and details of your request. For example:

<export>
<outputFormat>html</outputFormat>
<pages>10-20</pages>
<attachmentsPrefix>./images/</attachmentsPrefix>

</export>

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content contains an exportExecution
descriptor. See below for an example.

404 Not Found – When the request ID specified
in the request does not exist.

The following example shows the exportExecution descriptor that the server sends in response to the export
request:

<exportExecution>
<id>html;attachmentsPrefix=./images/</id>
<status>ready</status>
<outputResource>

<contentType>text/html</contentType>
</outputResource>

</exportExecution>

3.2.6 Modifying Report Parameters
As of JasperReports Server 5.6, you can update the report parameters, also known as input controls before
running report executions.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/parameters

Argument Type/Value Description

freshData default=true When data snapshots are enabled, new parameters must force the server to
get fresh data by querying the data source. This overrides the default in
Table 3-1, “Report Execution Properties,” on page 73.

79

JasperReports Server Web Services Guide

Media-Type Content

application/json [
{

"name":"someParameterName",
"value":["value 1", "value 2"]

},
{

"name":"someAnotherParameterName",
"value":["another value"]

}
]

application/xml <reportParameters>
<reportParameter name="Country_multi_select">

<value>Mexico</value>
</reportParameter>
<reportParameter name="Cascading_state_multi_select">

<value>Guerrero</value>
<value>Sinaloa</value>

</reportParameter>
</reportParameters>

Return Value on Success Typical Return Values on Failure

204 No Content – There is no content to return. 404 Not Found – When the request ID
specified in the request does not exist.

3.2.7 Polling Export Execution
As with the execution of the main report, you can also poll the execution of the export process. As of
JasperReports Server 5.6, this service supports the extended status value that includes an appropriate message.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/exports/
exportID/status

Options Sample Return Value

accept: application/xml
(default)

<status>ready</status>

80

Chapter 3 REST v2 - Report Services

accept:
application/status+xml

<status>
<errorDescriptor>

<errorCode>input.controls.validation.error</errorCode>
<message>Input controls validation failure</message>
<parameters>

<parameter>Specify a valid value for type Integer.<-
/parameter>

</parameters>
</errorDescriptor>
<value>failed</value>

</status>

accept: application/json { "value": "ready" }

accept:
application/status+json

{
"value": "failed",
"errorDescriptor": {

"message": "Input controls validation failure",
"errorCode": "input.controls.validation.error",
"parameters": ["Specify a valid value for type Integer."]

}
}

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the export status, as shown
above. In the extened format, error reports contain error
messages suitable for display.

404 Not Found – When the specified request
ID does not exist.

For example, to get the status of the HTML export in the previous example, use the following URL:

GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/html/status

When the status is “ready” your client can download the new export output and any attachments as described in
section 3.2.4, “Requesting Report Output,” on page 77. For example:

GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/html/outputResource

GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/html/images/img_0_46_0

3.2.8 Finding Running Reports and Jobs
The v2/reportExecutions service provides a method to search for reports that are running on the server, including
report jobs triggered by the scheduler.

To search for running reports, use the search arguments with the following URL:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions?<arguments>

81

JasperReports Server Web Services Guide

Argument Type/Value Description

reportURI Optional
String

This string matches the repository URI of the running report, relative the
currently logged-in user’s organization.

jobID Optional
String

For scheduler jobs, this argument matches the ID of the job that triggered
the running repot.

jobLabel Optional
String

For scheduler jobs, this argument matches the name of the job that
triggered the running repot.

userName Optional
String

For scheduler jobs, this argument matches the user ID that created the job.

fireTimeFrom Optional
Date/Time

For scheduler jobs, the fire time arguments define a range of time that
matches if the job that is currently running was triggered during this time.
You can specify either or both of the arguments. Specify the date and time
in the following pattern: yyyy-MM-dd'T'HH:mmZ.

fireTimeTo

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a descriptor for each of the
matching results.

204 No Content – When the search results are empty.

The response contains a list of summary reportExecution descriptors, for example in XML:

<reportExecutions>
<reportExecution>

<reportURI>repo:/supermart/details/CustomerDetailReport</reportURI>
<requestId>2071593484_1355224559918_5</requestId>

</reportExecution>
</reportExecutions>

Given the request ID, you can obtain more information about each result by downloading the full
reportExecution descriptor, as described in section 3.2.3, “Requesting Report Execution Details,” on
page 76.

For security purposes, the search for running reports is has the following restrictions:
• The system administrator (superuser) can see and cancel any report running on the server.
• An organization admin (jasperadmin) can see every running report, but can cancel only the reports that

were started by a user of the same organization or one of its child organizations.
• A regular user can see every running report, but can cancel only the reports that he initiated.

82

Chapter 3 REST v2 - Report Services

3.2.9 Stopping Running Reports and Jobs
To stop a report that is running and cancel its output, use the PUT method and specify a status of “cancelled” in
the body of the request.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/status/

Content-Type Content

application/xml

application/json

Send a status descriptor in either XML or JSON format with the value
cancelled. For example:

XML: <status>cancelled</status>

JSON: { "value": "cancelled" }

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – When the report execution was successfully
stopped, the server replies with the same status:

XML: <status>cancelled</status>

JSON: { "value": "cancelled" }

204 No Content – When the report specified by the
request ID is not running, either because it finished
running, failed, or was stopped by another process.

404 Not Found – When the request ID specified in the
request does not exist.

3.3 The v2/inputControls Service
The v2/reports service includes methods for reading and setting input controls. The inputControls methods
return an XML descriptor by default, but you can optionally specify the JSON format. The examples in this
section use the JSON format.

3.3.1 Listing Input Control Structure
The following method returns a description of the structure of the input controls for a given report.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/inputControls/

83

JasperReports Server Web Services Guide

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that describes
the input control structure. See example below.

404 Not Found – When the specified report URI is not
found in the repository.

The body of the response contains the structure of the input controls for the report. This structure contains the
information needed by your application to display the input controls to your users and allow them to make a
selection. In particular, this includes any cascading structure as a set of dependencies between input controls.
Each input control also has a type that indicates how the user should be allowed to make a choice:

• bool
• singleSelect
• singleSelectRadio
• multiSelectCheckbox
• multiSelect

• singleValue
• singleValueText
• singleValueNumber
• singleValueDate
• singleValueDatetime
• singleValueTime

The following example shows a response in the JSON format:

{
"inputControl" : [{
"id":"Cascading_name_single_select",
"label":"Cascading name single select",
"mandatory":"true",
"readOnly":"false",
"type":"singleSelect",
"uri":"repo:/reports/samples/Cascading_multi_select_report_files/Cascading_name_single_select",
"visible":"true",
"masterDependencies":{"controlId":["Country_multi_select","Cascading_state_multi_

select"]},
"slaveDependencies":null,
"validationRules": [{ ... }]
"state": {
"uri": "/reports/samples/Cascading_multi_select_report_files/

Cascading_name_single_select",
"id": "Cascading_name_single_select",
"value": null,
"options": [{
"selected": false,
"label": "A & U Jaramillo Telecommunications, Inc",
"value": "A & U Jaramillo Telecommunications, Inc"
}, ...]} }

},
...

]}

The structure includes a set of validation rules for each input control. These rules indicate what type of
validation your client should perform on input control values it receives from your users, and if the validation
fails, the message to display. Depending on the type of the input control, the following validations are possible:
• mandatoryValidationRule – This input is required and your client should ensure the user enters a value.

84

Chapter 3 REST v2 - Report Services

• dateTimeFormatValidation – This input must have a data time format and your client should ensure the user
enters a valid date and time.

The following sample shows the structure of these two possible validation rules.

"validationRules": [{
"mandatoryValidationRule" : {
"errorMessage" : "This field is mandatory so you must enter data."

},
"dateTimeFormatValidationRule" : {
"errorMessage" : "Specify a valid date value.",
"format" : "yyyy-MM-dd"

}
}]

3.3.2 Listing Input Control Values
The following method returns a description of the possible values of all input controls for the report. Among
these choices, it shows which ones are selected.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/inputControls/values/

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that describes
the input control values and selection.

404 Not Found – When the specified report URI is not
found in the repository.

The body of the response contains the structure of the input controls for the report. The following example
shows a response in the JSON format:

{
"inputControlState" : [{
"uri" : "/reports/samples/.../Country_multi_select",
"value" : "",
"options" : {
"label" : "Canada",
"selected" : "false",
"value" : "Canada"

}, {
"label" : "Mexico",
"selected" : "false",
"value" : "Mexico"

}, {

"label" : "USA",
"selected" : "true",
"value" : "USA"

85

JasperReports Server Web Services Guide

}
},
...
]

}

If a selection-type input control has a null value, it is given as ~NULL~. If no selection is made, its
value is given as ~NOTHING~.

3.3.3 Setting Input Control Values
The following method updates the state of current input control values, so they are set for the next run of the
report.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/inputControls/<ic1>;
<ic2>;.../values/

Content-Type Content

application/json A JSON object that lists the new selected values. The value of every input control
is given as an array of string values, even for single-select controls or multi-select
controls with a single value. See also the example below:

{
"boolean-input-control" : ["true"],
"integer-input-control" : ["123456"],
"single-select-input-control" : ["some value"],
"multiple-select-input-control-1" : ["another value"],
"multiple-select-input-control-2" : ["first", "second", "third"]

}

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that describes the
new selection of input control values.

404 Not Found – When the specified report
URI is not found in the repository.

Assuming the client receives the response given in section 3.3.2, “Listing Input Control Values,” on page 85,
it can send the following request body:

{
"Country_multi_select":["Mexico"],
"Cascading_state_multi_select":["Guerrero", "Sinaloa"]

}

When specifying the option for the JSON format, the server’s response is:

86

Chapter 3 REST v2 - Report Services

{
"inputControlState" : [{
"uri" : "/reports/samples/.../Country_multi_select",
"value" : "",
"options" : {
"label" : "Canada",
"selected" : "false",
"value" : "Canada"

}, {

"label" : "Mexico",
"selected" : "true",
"value" : "Mexico"

}, {
"label" : "USA",
"selected" : "false",
"value" : "USA"

}
},
...
]

}

3.4 The v2/options Service
Report options are sets of input control values that are saved in the repository. A report option is always
associated with a report.

3.4.1 Listing Report Options
The following method retrieves a list of report options summaries. The summaries give the name of the report
options, but not the input control values that are associated with it.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options/

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that lists the
names of the report options for the given report.

404 Not Found – When the specified report URI is not
found in the repository.

The body of the response contains the labels of the report options, for example:

{
"reportOptionsSummary": [{
"uri": "/reports/samples/Options",

87

JasperReports Server Web Services Guide

"id": "Options",
"label": "Options"

},
{
"uri": "/reports/samples/Options_2",
"id": "Options_2",
"label": "Options 2"

}]
}

3.4.2 Creating Report Options
The following method creates a new report option for a given report. A report option is defined by a set of
values for all of the report’s input controls.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options?<arguments>

Argument Type/Value Description

label string The name to give the new report option.

overwrite? true / false If true, any report option that has the same label is replaced. If false or
omitted, any report option with the same label will not be replaced.

Content-Type Content

application/json A JSON object that lists the input control selections. See example below.

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that describes
the new selection of input control values.

404 Not Found – When the specified report URI is not
found in the repository.

In this example, we create new options for the sample report named Cascading_multi_select_report:

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/Cascading_multi_select_
report/options?label=MyReportOption

With the following request body:

{
"Country_multi_select":["Mexico"],
"Cascading_state_multi_select":["Guerrero", "Sinaloa"]

}

When successful, the server responds with a JSON object that describes the new report options, for example:

88

Chapter 3 REST v2 - Report Services

{
"uri":"/reports/samples/MyReportOption",
"id":"MyReportOption",
"label":"MyReportOption"

}

3.4.3 Updating Report Options
Use the following method to modify the values in a given report option.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options/<optionID>/

Content-Type Content

application/json A JSON object that lists the input control selections. See example below.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified report URI is not
found in the repository.

For example, we change the report option we created in section 3.4.2, “Creating Report Options,” on page 88
with the following header:

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/Cascading_multi_select_
report/options/MyReportOption

And the following request body:

{
"Country_multi_select":["USA"],
"Cascading_state_multi_select":["CA", "WA"]

}

3.4.4 Deleting Report Options
Use the following method to delete a given report option.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options/<optionID>/

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified report URI is not
found in the repository.

89

JasperReports Server Web Services Guide

3.5 The v2/jobs Service
The rest_v2/jobs service provides the interface to schedule reports and manage scheduled reports (also called
jobs). It replaces the functionality of the jobsummary and job services. In addition, the new service provides an
API to scheduler features that were introduced in JasperReports Server 4.7, such as bulk updates, pausing jobs,
FTP output and exclusion calendars.

3.5.1 Listing Report Jobs
Use the following method to list jobs, either all jobs managed by the scheduler or the jobs for a specific report:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs
http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/path/to/report

Return Value on Success Typical Return Values on Failure

200 OK – The body contains XML that describes jobs
in the scheduler.

404 Not Found – When no job is not found in the
server.

The jobs are described in the jobsummary element such as the following example:

The jobsummary XML element returned by the rest_v2/jobs service has a different structure than the
element with the same name returned by the rest/jobsummary service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jobs>

<jobsummary>
<id>2042</id>
<label>JUnit_Job_New</label>
<reportUnitURI>/organizations/organization_1/reports/samples/AllAccounts
</reportUnitURI>

<state>
<nextFireTime>2222-02-04T13:47:00+02:00</nextFireTime>
<value>NORMAL</value>

</state>
<version>1</version>

</jobsummary>
</jobs>

3.5.2 Viewing a Job Definition
The GET method with a specific job ID retrieves the detailed information about that scheduled job.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/

90

Chapter 3 REST v2 - Report Services

Options

accept: application/xml (default)

accept: application/job+json

Return Value on Success Typical Return Values on Failure

200 OK – The body contains XML that describes all
the job properties.

404 Not Found – When the specified job is not found
in the server.

The GET method returns a job element that gives the output, scheduling, and parameter details, if any, for the
job.

The job XML element returned by the rest_v2/jobs service has a different structure than the element
with the same name returned by the rest/job service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<job>
<baseOutputFilename>AllAccounts</baseOutputFilename>
<repositoryDestination>
<folderURI>/reports/samples</folderURI>
<id>2041</id>
<outputDescription/>
<overwriteFiles>false</overwriteFiles>
<sequentialFilenames>false</sequentialFilenames>
<version>0</version>

</repositoryDestination>
<description/>
<id>2042</id>
<label>MyNewJob</label>
<mailNotification>
<bccAddresses/>
<ccAddresses/>
<id>2007</id>
<includingStackTraceWhenJobFails>false</includingStackTraceWhenJobFails>
<messageText>Body of message</messageText><
resultSendType>SEND_ATTACHMENT</resultSendType>
<skipEmptyReports>true</skipEmptyReports>
<skipNotificationWhenJobFails>false</skipNotificationWhenJobFails>
<subject>Subject of message</subject>
<toAddresses><address>name@example.com</address></toAddresses>
<version>0</version>

</mailNotification>
<outputFormats>
<outputFormat>XLS</outputFormat>
<outputFormat>CSV</outputFormat>
<outputFormat>PDF</outputFormat>
<outputFormat>HTML</outputFormat>
<outputFormat>DOCX</outputFormat>

</outputFormats>
<outputLocale/>
<reportUnitURI>/reports/samples/AllAccounts</reportUnitURI>
<simpleTrigger>
<id>2040</id>

91

JasperReports Server Web Services Guide

<startDate>2222-02-04T03:47:00+02:00</startDate>
<timezone>America/Los_Angeles</timezone>
<version>0</version>
<occurrenceCount>1</occurrenceCount>

</simpleTrigger>
<version>1</version>

</job>

As of JasperReports Server 5.5, the v2/jobs service also supports the extended application/job+json syntax. This
format allows you to specify the scheduler features introduced in release 5.5, such as alert messages:

{
"id": 3819,
"version": 0,
"username": "superuser",
"label": "test",
"description": "",
"creationDate": "2013-08-30T02:02:40.382+03:00",
"trigger": {

"simpleTrigger": {
"id": 3816,
"version": 0,
"timezone": "America/Los_Angeles",
"calendarName": null,
"startType": 2,
// startDate format is yyyy-MM-dd HH:mm
// time zone specified in a 'timezone' filed getting applied on a server
"startDate": "2013-09-26 10:00",
// endDate format is yyyy-MM-dd HH:mm
// time zone specified in a 'timezone' filed getting applied on a server
"endDate": null,
"misfireInstruction": 0,
"occurrenceCount": 1,
"recurrenceInterval": null

}
},
"source": {

"reportUnitURI": "/organizations/organization_1/reports/samples/Cascading_multi_select_
report",

"parameters": {
"parameterValues": {

"Country_multi_select": ["Mexico"],
"Cascading_name_single_select": ["Chin-Lovell Engineering Associates"],
"Cascading_state_multi_select": ["DF","Jalisco","Mexico"]

}
}

},
"baseOutputFilename": "Cascading_multi_select_report",
"outputLocale": "",
"mailNotification": null,
"alert": {

"id": 0,
"version": -1,
"recipient": "OWNER_AND_ADMIN",
"toAddresses": {

92

Chapter 3 REST v2 - Report Services

"address": []
},
"jobState": "FAIL_ONLY",
"messageText": null,
"messageTextWhenJobFails": null,
"subject": null,
"includingStackTrace": true,
"includingReportJobInfo": true

},
"outputTimeZone": "America/Los_Angeles",
"repositoryDestination": {

"id": 3817,
"version": 0,
"folderURI": "/organizations/organization_1/reports/samples",
"sequentialFilenames": false,
"overwriteFiles": false,
"outputDescription": "",
"timestampPattern": null,
"saveToRepository": true,
"defaultReportOutputFolderURI": null,
"usingDefaultReportOutputFolderURI": false,
"outputLocalFolder": null,
"outputFTPInfo": {

"userName": null,
"password": null,
"folderPath": null,
"serverName": null

}
},
"outputFormats": {

"outputFormat": ["PDF"]
}

}

3.5.3 Extended Job Search
The GET method is also used for more advanced job searches. Some field of the jobsummary descriptor can be
used directly as parameters, and fields of the job descriptor can also be used as search criteria. You can also
control the pagination and sorting order of the reply.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs?<arguments>

Argument Type/Value Description

label string The name of the report job.

owner string The username of the report job creator; the user who scheduled the
report.

93

JasperReports Server Web Services Guide

repor-
tUnitURI?

/path/to/r-
eport

Gives the repository URI of a report to list all jobs. When this argument is
omitted, this method returns all jobs for all reports.

example? JSON
jobModel

Searches for jobs that match the JSON jobModel. The jobModel is a
fragment of a job descriptor containing one or more fields to be matched.

numberOf

Rows

integer Turns on pagination of the result by specifying the number of jobsummary
descriptors per results page.

startIndex integer Determines the page number in paginated results by specifying the index
of the first jobsummary to be returned.

sortType Possible values are: NONE, SORTBY_JOBID, SORTBY_JOBNAME,
SORTBY_REPORTURI, SORTBY_REPORTNAME, SORTBY_
REPORTFOLDER, SORTBY_OWNER, SORTBY_STATUS, SORTBY_
LASTRUN, SORTBY_NEXTRUN

isAscending true / false Determines the sort order: ascending if true, descending if false or
omitted.

Return Value on Success Typical Return Values on Failure

200 OK – The body contains XML that describes jobs in
the scheduler that match the search criteria.

404 Not Found – When the specified report is not
found in the server.

The body of the return value is an XML jobs descriptor containing jobsummary descriptors, as shown in
section 3.5.1, “Listing Report Jobs,” on page 90.

The example parameter lets you specify a search on fields in the job descriptor, such as output formats. Some
fields may be specified in both the example parameter and in a dedicated parameter, for example label. In that
case, the search specified in the example parameter takes precedence.

For example, you can search for all jobs that specify and output format of PDF. The JSON string to specify this
field is:

{"outputFormat":"PDF"}

And the corresponding URI, with proper encoding, is:

http://<host>:<port>/jasperserver[-pro]/rest_
v2/jobs?example=%7b%22outputFormat%22%3a%22PDF%22%7d

3.5.4 Scheduling a Report
To schedule a report, create its job descriptor similar to the one returned by the GET method, and use the PUT
method of the V2/jobs service. Specify the report being scheduled inside the job descriptor. You do not need to
specify any job IDs in the descriptor, because the server will assign them.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/

94

Chapter 3 REST v2 - Report Services

Content-Type Content

application/xml

application/job+json

A well-formed XML or JSON job descriptor such as the one shown in
“Viewing a Job Definition” on page 90.

Return Value on Success Typical Return Values on Failure

201 Created – The body contains the XML job
descriptor of the newly created job. It is similar to the
one that was sent but now contains the jobID for the
new job.

404 Not Found – When the report specified in the job
descriptor is not found in the server.

3.5.5 Viewing Job Status
The following method returns the current runtime state of a job:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/state/

Return Value on Success Typical Return Values on Failure

200 OK – Body contains the status descriptor. 404 Not Found – When the specified <jobID> does
not exist.

3.5.6 Editing a Job Definition
To modify an existing job definition, use the GET method to read its job descriptor, modify the descriptor as
required, and use the POST method of the v2/jobs service. The POST method replaces the definition of the job
with the given job ID.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/

Content-Type Content

application/xml

application/json

A well-formed XML or JSON job descriptor.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified job is not found
in the server.

3.5.7 Updating Jobs in Bulk
The POST method also supports other parameters to perform bulk updates on scheduled jobs.

95

JasperReports Server Web Services Guide

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs?<arguments>

Argument Type/Value Description

id? jobID string Can be used multiple times to create a list of jobIDs to update

replace
Trigger
IgnoreType

true / false When true, the trigger is replaced from the content being sent and the trigger
type is ignored. When false or omitted, the trigger is updated automatically
by the scheduler.

Content-Type Content

application/xml A well-formed XML jobModel descriptor. The jobModel is a fragment of a job
descriptor containing only the fields to be updated. See example below.

Return Value on Success Typical Return Values on Failure

200 OK – Body empty. 404 Not Found – When the specified job is not found
in the server.

For example, the following request will update the job description in several jobs:

POST request: http://localhost:8080/jasperserver-pro/rest_v2/jobs?id=3798&id=3799&id=3800

And the body of the request contains:

<jobModel>
<description>This description updated in bulk</description>

</jobModel>

3.5.8 Pausing Jobs
The following method pauses currently scheduled job execution. Pausing keeps the job schedule and all other
details but prevents the job from running. It does not delete the job.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/pause/

Content-Type Content

application/xml A well-formed XML jobIdList descriptor that specifies the IDs of the jobs. See
example below. If the body of the request is empty, or the list is empty, all
jobs in the scheduler will be paused.

Return Value on Success Typical Return Values on Failure

200 OK

The following example shows a list of jobs sent in the body of the request.

96

Chapter 3 REST v2 - Report Services

<jobIdList>
<jobId>1236</jobId>
<jobId>1237</jobId>
<jobId>1238</jobId>
<jobId>1239</jobId>

</jobIdList>

3.5.9 Resuming Jobs
Use the following method to resume any or all paused jobs in the scheduler. Resuming a job means that any
defined trigger in the schedule that occurs after the time it is resumed will cause the report to run again. Missed
schedule triggers that occur before the job is resumed are never run.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/resume/

Content-Type Content

application/xml A well-formed XML jobIdList descriptor that specifies the IDs of the jobs. See
example below. If the body of the request is empty, or the list is empty, all
paused jobs in the scheduler will resume.

Return Value on Success Typical Return Values on Failure

200 OK

The XML format of the jobIdList descriptor in the request body is identical to the one used when pausing jobs:

<jobIdList>
<jobId>1236</jobId>
<jobId>1237</jobId>

</jobIdList>

3.5.10 Restarting Failed Jobs
Use the following method to rerun failed jobs in the scheduler. For each job to be restarted, the scheduler
creates an immediate single-run copy of job, to replace the one that failed. Therefore, all jobs listed in the
request body will run once immediately after issuing this command. The single-run copies have a misfire policy
set so that they do not trigger any further failures (MISFIRE_ INSTRUCTION_IGNORE_MISFIRE_POLICY). If the
single-run copies fail themselves, no further attempts are made automatically.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/restart/

97

JasperReports Server Web Services Guide

Content-Type Content

application/xml A well-formed XML jobIdList descriptor that specifies the IDs of the jobs. See
example below.

Return Value on Success Typical Return Values on Failure

200 OK

The XML format of the jobIdList descriptor in the request body is identical to the one used when pausing jobs:

<jobIdList>
<jobId>8321</jobId>
<jobId>8322</jobId>

</jobIdList>

3.5.11 Specifying FTP Output
The REST service allows a job to specify output to remote files through FTP (File Transfer Protocol). In addition
to the repository location, you can specify an FTP server and path where JasperReports Server will write the
output files when the job runs. You also need to provide a username and password to access the FTP server.

To specify these parameters, add the outputFTPInfo element to the XML job descriptor, as shown in the
following example:

<job>
<reportUnitURI>/reports/samples/AllAccounts</reportUnitURI>
<label>MyJob</label>
<description>MyJob description</description>
<baseOutputFilename>WeeklyAccountsReport</baseOutputFilename>
<repositoryDestination>
<folderURI>/reports/samples</folderURI>
<outputDescription/>
<overwriteFiles>true</overwriteFiles>
<sequentialFilenames>false</sequentialFilenames>

<outputFTPInfo>

<serverName>ftpserver.example.com</serverName>

<userName>ftpUser</userName>

<password>ftpPassword</password>

<folderPath>/Shared/Users/ftpUser</folderPath>

</outputFTPInfo>
</repositoryDestination>
<outputFormats>
<outputFormat>XLS</outputFormat>
<outputFormat>PDF</outputFormat>

</outputFormats>
...

</job>

98

Chapter 3 REST v2 - Report Services

FTP output is always specified in addition to repository output, and the output will be written to both the
repository and the FTP location. You cannot specify FTP output alone. The file names to be written are the
same ones that are generated by the job output, as specified by the baseOutputFilename, sequential pattern if
any, and format extensions such as .pdf. Similarly, the file overwrite and sequential filename behavior specified
for repository output also apply to FTP output.

3.5.12 Calendar Exclusion for the Scheduler
The scheduler allows a job to be defined with a list of excluded days or times when you do not want the job to
run. For example, if you have a report scheduled to run every business day, you want to exclude holidays that
change every year. The list for excluded days and times is defined as a calendar, and there are various ways to
define the calendar.

The scheduler stores any number of exclusion calendars that you can reference by name. When scheduling a
report, reference the name of the calendar to exclude, and the scheduler automatically calculates the correct days
to trigger the report. The scheduler also allows you to update an exclusion calendar and update all of the report
jobs that used it. Therefore, you can update the calendar of excluded holidays every year and not need to
modify any report jobs.

3.5.12.1 Listing All Registered Calendar Names

The following method returns the list of all calendar names that were added to the scheduler.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/?<parameter>

Argument Type/Value Description

calendar
Type

optional string A type of calendar to return: annual, base, cron, daily, holiday, monthly, or
weekly. See Adding or Updating an Exclusion Calendar for a description of
the various types. You may specify only one calendarType parameter. When
calendarType isn't specified, then all calendars names are returned. If
calendarType has an invalid value, then an empty collection is returned.

Return Value on Success Typical Return Values on Failure

200 OK – Body is XML that contains a list of calendar
names.

401 Unauthorized

The list of calendar names in the result has the following XML format:

<calendarNameList>
<calendarName>name1</calendarName>
<calendarName>name2</calendarName>

</calendarNameList>

3.5.12.2 Viewing an Exclusion Calendar

The following method takes the name of an exclusion calendar and returns the definition of the calendar:

99

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/<calendarName>/

Return Value on Success Typical Return Values on Failure

200 OK – Body is XML that contains the requested
calendar.

404 Not Found – When the specified calendar name
does not exist.

The calendar descriptor in the result has the following XML format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<baseCalendar>
<calendarType>base</calendarType>
<excludeDates/>
<description>Base calendar description</description>
<excludeDays/>
<timeZone>GMT+03:00</timeZone>

</baseCalendar>
<calendarType>daily</calendarType>
<excludeDates/>
<description>Main calendar description</description>
<excludeDays/>
<invertTimeRange>false</invertTimeRange>
<rangeEndingCalendar >2012-03-20T14:44:37.353+03:00</rangeEndingCalendar>
<rangeStartingCalendar>2012-03-20T14:43:37.353+03:00</rangeStartingCalendar>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

3.5.12.3 Deleting an Exclusion Calendar

Use the following method to delete a calendar by name.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/<calendarName>/

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified calendar name
does not exist.

3.5.12.4 Adding or Updating an Exclusion Calendar

This method creates a named exclusion calendar that you can use when scheduling reports. If the calendar
already exists, you have the option of replacing it and updating all the jobs that used it.

100

Chapter 3 REST v2 - Report Services

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_
v2/jobs/calendars/<calendarName>?<arguments>

Argument Type/Value Description

replace? true / false If true, any calendar existing in the JobStore with the same name is
overwritten. When this argument is omitted, it is false by default.

update
Triggers?

true / false Whether or not to update existing triggers that referenced the already
existing calendar so that they are based on the new trigger.

Content-Type Content

application/xml A well-formed XML calendar descriptor (see examples below).

Return Value on Success Typical Return Values on Failure

200 OK – 404 Not Found – When the specified calendar name
does not exist.

The following examples show the types of exclusion calendars that you can add to the scheduler:
• Base calendar.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>base</calendarType>
<description>Base calendar description</description>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Annual calendar – A list of days that you want to exclude every year.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>annual</calendarType>
<description>Annual calendar description</description>
<timeZone>GMT+03:00</timeZone>

<excludeDays>
<excludeDay>2012-03-20</excludeDay>
<excludeDay>2012-03-21</excludeDay>
<excludeDay>2012-03-22</excludeDay>

</excludeDays>
</reportJobCalendar>

• Cron calendar – Defines the days and times to exclude as a cron expression.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>cron</calendarType>
<description>Cron format description</description>

101

JasperReports Server Web Services Guide

<cronExpression>0 30 10-13 ? * WED,FRI</cronExpression>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Daily calendar – Defines a time range to exclude every day.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>daily</calendarType>
<description>Daily calendar description</description>
<invertTimeRange>false</invertTimeRange>
<rangeEndingCalendar>2012-03-20T14:44:37.353+03:00</rangeEndingCalendar>
<rangeStartingCalendar>2012-03-20T14:43:37.353+03:00</rangeStartingCalendar>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Holiday calendar – Defines a set of days to exclude that can be updated every year.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>holiday</calendarType>
<description>Holiday calendar description</description>
<excludeDays>
<excludeDay>2012-03-20</excludeDay>
<excludeDay>2012-03-21</excludeDay>
<excludeDay>2012-03-22</excludeDay>

</excludeDays>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Weekly calendar – Defines a set of days to be excluded each week.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>weekly</calendarType>
<description>test description</description>
<excludeDaysFlags>
<excludeDayFlag>false</excludeDayFlag> <!--SUNDAY--->
<excludeDayFlag>true</excludeDayFlag> <!--MONDAY--->
<excludeDayFlag>false</excludeDayFlag> <!--TUESDAY--->
<excludeDayFlag>true</excludeDayFlag> <!--WEDNESDAY--->
<excludeDayFlag>false</excludeDayFlag> <!--THURSDAY--->
<excludeDayFlag>true</excludeDayFlag> <!--FRIDAY--->
<excludeDayFlag>false</excludeDayFlag> <!--SATURDAY--->

</excludeDaysFlags>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Monthly calendar – Defines the dates to exclude every month.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>monthly</calendarType>
<description>Monthly calendar description</description>

102

Chapter 3 REST v2 - Report Services

<excludeDaysFlags>
<excludeDayFlag>true</excludeDayFlag> <!--01--->
<excludeDayFlag>false</excludeDayFlag> <!--02--->
<excludeDayFlag>true</excludeDayFlag> <!--03--->
<excludeDayFlag>false</excludeDayFlag> <!--04--->
<excludeDayFlag>true</excludeDayFlag> <!--05--->
<excludeDayFlag>false</excludeDayFlag> <!--06--->
<excludeDayFlag>true</excludeDayFlag> <!--07--->
<excludeDayFlag>false</excludeDayFlag> <!--08--->
<excludeDayFlag>true</excludeDayFlag> <!--09--->
<excludeDayFlag>false</excludeDayFlag> <!--10--->
<excludeDayFlag>true</excludeDayFlag> <!--11--->
<excludeDayFlag>false</excludeDayFlag> <!--12--->
<excludeDayFlag>false</excludeDayFlag> <!--13--->
<excludeDayFlag>true</excludeDayFlag> <!--14--->
<excludeDayFlag>false</excludeDayFlag> <!--15--->
<excludeDayFlag>false</excludeDayFlag> <!--16--->
<excludeDayFlag>false</excludeDayFlag> <!--17--->
<excludeDayFlag>false</excludeDayFlag> <!--18--->
<excludeDayFlag>false</excludeDayFlag> <!--19--->
<excludeDayFlag>false</excludeDayFlag> <!--20--->
<excludeDayFlag>false</excludeDayFlag> <!--21--->
<excludeDayFlag>false</excludeDayFlag> <!--22--->
<excludeDayFlag>false</excludeDayFlag> <!--23--->
<excludeDayFlag>false</excludeDayFlag> <!--24--->
<excludeDayFlag>false</excludeDayFlag> <!--25--->

<excludeDayFlag>false</excludeDayFlag> <!--26--->
<excludeDayFlag>false</excludeDayFlag> <!--27--->
<excludeDayFlag>false</excludeDayFlag> <!--28--->
<excludeDayFlag>false</excludeDayFlag> <!--29--->
<excludeDayFlag>false</excludeDayFlag> <!--30--->
<excludeDayFlag>false</excludeDayFlag> <!--31--->

</excludeDaysFlags>
<timeZone>GMT+03:00</timeZone>
</reportJobCalendar>

3.6 The v2/queryExecutor Service
In addition to running reports, JasperReports Server exposes queries that you can run through the rest_
v2/queryExecutor service. In release 5.1, the only resource that supports queries is a Domain.

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/queryExecutor/path/to/Domain/?q=<query>

Argument Type/Value Description

q Required
String

The query string is a special format that references the fields and measures
exposed by the Domain. To write this query, you must have knowledge of
the Domain schema that is not available through the REST services. See
below.

103

JasperReports Server Web Services Guide

Options

accept: application/xml (default)

accept: application/json

Accept-Language: <locale>, <relativeQualityFactor>; for example en_US, q=0.8;

Return Value on Success Typical Return Values on Failure

200 OK – The body contains the data that is the result
of the query. See the format of the data below.

404 Not Found – When the specified Domain does
not exist.

If the query is too large to fit in the argument in the URL, use the POST method to send it as request content:

Method URL

POST http://<host>:<port>/jasperserver-pro/rest_v2/queryExecutor/path/to/Domain/

Content-Type Content

application/xml The query string is a special format that references the fields and measures
exposed by the Domain. To write this query, you must have knowledge of
the Domain schema that is not available through the REST services. See
below.

Options

accept: application/xml (default)

accept: application/json

Accept-Language: <locale>, <relativeQualityFactor>; for example en_US, q=0.8;

Return Value on Success Typical Return Values on Failure

200 OK – The body contains the data that is the result
of the query. See the format of the data below.

404 Not Found – When the specified Domain does
not exist.

The following example show the format of a query in XML:

<query>
<queryFields>
<queryField id="expense_join_store.ej_store_store_city"/>
<queryField id="expense_join_store.ej_store_store_country"/>
<queryField id="expense_join_store.ej_store_store_name"/>
<queryField id="expense_join_store.ej_store_store_state"/>
<queryField id="expense_join_store.ej_store_store_street_address"/>

</queryFields>
<queryFilterString>expense_join_store.ej_store_store_country == 'USA'

 and expense_join_store.ej_store_store_state == 'CA'
</queryFilterString>

</query>

104

Chapter 3 REST v2 - Report Services

And the following sample shows the result of query. In order to optimize the size of the response, rows are
presented as sets of values without the column names repeated for each row. The column IDs appear at the top
of the result, as shown in the following example. As with the query, the result requires knowledge of the
Domain schema to identify the human-readable column names.

<queryResult>
<names>
<name>expense_join_account.ej_account_account_description</name>
<name>expense_join_account.ej_expense_fact_account_id</name>
<name>expense_join_account.ej_account_account_parent</name>
<name>expense_join_account.ej_account_account_rollup</name>
<name>expense_join_account.ej_account_account_type</name>
<name>expense_join_account.ej_account_Custom_Members</name>
<name>expense_join.ej_expense_fact_amount</name>
<name>expense_join_store.ej_store_store_type</name>
<name>expense_join_store.ej_store_store_street_address</name>
<name>expense_join_store.ej_store_store_city</name>
<name>expense_join_store.ej_store_store_state</name>
<name>expense_join_store.ej_store_store_postal_code</name>
<name>expense_join_store.sample_time</name>

</names>
<values>
<row>
<value xsi:type="xs:string">Marketing</value>
<value xsi:type="xs:int">4300</value>
<value xsi:type="xs:int">4000</value>
<value xsi:type="xs:string">+</value>
<value xsi:type="xs:string">Expense</value>
<value xsi:nil="true"/>
<value xsi:type="xs:double">1884.0000</value>
<value xsi:type="xs:dateTime">1997-01-01T04:05:06+02:00</value>
<value xsi:type="xs:string">HeadQuarters</value>
<value xsi:type="xs:string">1 Alameda Way</value>
<value xsi:type="xs:string">Alameda</value>
<value xsi:type="xs:string">CA</value>
<value xsi:type="xs:int">94502</value>
<value xsi:type="xs:string">USA</value>

<value xsi:type="xs:time">04:05:06+02:00</value>
</row>
...

</values>
</queryResult>

Both date-only and timestamp fields are given in the ISO date-time format such as 1997-01-
01T04:05:06+02:00.

For database columns that store a time and date that includes a time zone, such as “timestamp with
time zone” in PostgreSQL, the result is not guaranteed to be in the same timezone as stored in the
database. These dates and times are converted to the server’s time zone.

105

JasperReports Server Web Services Guide

3.7 The v2/caches Service
In JasperReports Server 5.6, a new service allows you to clear the caches used by virtual data sources. Virtual
data sources use the Teiid engine that lets you combine data from several datasources such as JDBC, JNDI, and
several flavors of big data. In order to join the data, the Teiid engine uses an internal cache to store data. You
can use this service to clear this cache, for example after updating your data sources.

For now this service only provides virtual data source cache deletion.

Method URL

DELETE http://<host>:<port>/jasperserver-pro/rest_v2/caches/vds/

Return Value on Success Typical Return Values on Failure

204 No Content – There is nothing to return. 404 Not Found – When the specified cache does not
exist.

106

CHAPTER 4 REST V2 - ADMINISTRATION SERVICES
Only administrative users may access the REST services for administration. For authentication using the REST
web services, see section 1.2, “REST Authentication,” on page 12.

This chapter includes the following sections:
• The v2/organizations Service
• The v2/users Service
• The v2/attributes Service
• The v2/roles Service

4.1 The v2/organizations Service

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

In commercial editions of JasperReports Server 5.1 and later, the rest_v2/organizations service replaces the
rest/organization service. It provides similar methods that allow you to list, view, create, modify, and delete
organizations (also known as tenants). New functionality allows you to search for organizations by name and
retrieve hierarchies of organizations.

Because the organization ID is used in the URL, this service can operate only on organizations whose ID is less
than 100 characters long and does not contain spaces or special symbols. As with resource IDs, the organization
ID is permanent and cannot be modified for the life of the organization.

4.1.1 Searching for Organizations
The GET method without any organization ID searches for organizations by ID, alias, or display name. If no
search is specified, it returns a list of all organizations. Searches and listings start from but do not include the
logged-in user’s organization or the specified base (rootTenantId).

107

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/organizations?<arguments>

Argument Type Description

q Optional
String

Specify a string or substring to match the organization ID, alias, or name of
any organization. The search is not case sensitive. Only the matching
organizations are returned in the results, regardless of their hierarchy.

include
Parents

Optional
Boolean

When used with a search, the result will include the parent hierarchy of
each matching organization. When not specified, this argument is false by
default.

rootTenantId Optional
String

Specifies an organization ID as a base for searching and listing child
organizations. The base is not included in the results. Regardless of this
base, the tenantFolderURI values in the result are always relative to the
logged-in user’s organization. When not specified, the default base is the
logged-in user’s organization.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a set of descriptors for all
organizations in the result.

204 No Content – The search did not return any
organizations.

The following example shows a search for an organization and its parent hierarchy:

GET http://localhost:8080/jasperserver-pro/rest_v2/organizations?q=acc&includeParents=true

This request has the following response, as viewed by superuser at the root of the organization hierarchy:

<organizations>
<organization>
<alias>Finance</alias>
<id>Finance</id>
<parentId>organizations</parentId>
<tenantDesc></tenantDesc>
<tenantFolderUri>/organizations/Finance</tenantFolderUri>
<tenantName>Finance</tenantName>
<tenantUri>/Finance</tenantUri>
<theme>default</theme>

</organization>

<organization>
<alias>Accounts</alias>
<id>Accounts</id>

108

Chapter 4 REST v2 - Administration Services

<parentId>Finance</parentId>
<tenantDesc></tenantDesc>
<tenantFolderUri>/organizations/Finance/organizations/Accounts</tenantFolderUri>
<tenantName>Accounts</tenantName>
<tenantUri>/Finance/Accounts</tenantUri>
<theme>default</theme>

</organization>
</organizations>

4.1.2 Viewing an Organization
The GET method with an organization ID retrieves a single descriptor containing the list of properties for the
organization. When you specify an organization, use its unique ID, not its path.

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/organizations/organizationID

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the descriptor for the given
organization.

404 Not Found – When the ID does not match any
organization. The content includes an error message.

403 Forbidden – When the logged-in user does not
have permission to view the given organization

The organization descriptor is identical to the one returned when searching or listing organization, but only a
single descriptor is ever returned. The following example shows the descriptor in JSON format:

{
"id":"Finance",
"alias":"Finance",
"parentId":"organizations",
"tenantName":"Finance",
"tenantDesc":" ",
"tenantNote":null,
"tenantUri":"/Finance",
"tenantFolderUri":"/organizations/Finance",
"theme":"default"

}

4.1.3 Creating an Organization
To create an organization, put all information in an organization descriptor, and include it in a POST request to
the rest_v2/organizations service, with no ID specified in the URL. The organization is created in the
organization specified by the parentId value of the descriptor.

109

JasperReports Server Web Services Guide

Method URL

POST http://<host>:<port>/jasperserver-pro/rest_v2/organizations?<argument>

Argument Type Description

create
Default
Users

Optional
Boolean

Set this argument to false to suppress the creation of default users (joeuser,
jasperadmin) in the new organization. When not specified, the default
behavior is true and organizations are created with the standard default
users.

Content-Type Content

application/xml

application/json

A partial or complete organization descriptor that includes the desired
properties for the organization.

Return Value on Success Typical Return Values on Failure

201 Created – The organization was successfully
created using the values in the descriptor or default
values if missing.

404 Not Found – When the ID of the parent
organization cannot be resolved.

400 Bad Request – When the ID or alias of the new
organization is not unique on the server, or when the
ID in the description contains illegal symbols. The
following symbols are not allowed:

id and alias: ~!+-#$%^|

tenantName: |&*?<>/\

The descriptor sent in the request should contain all the properties you want to set on the new organization.
Specify the parentId value to set the parent of the organization, not the tenantUri or tenantFolderUri
properties. The following example shows the descriptor in JSON format:

{
"id":"Audit",
"alias":"Audit",
"parentId":"Finance",
"tenantName":"Audit",
"tenantDesc":"Audit Department of Finance",
"theme":"default"

}

However, all properties have defaults or can be determined based on the alias value. The minimal descriptor
necessary to create an organization is simply the alias property. In this case, the organization is created as a
child of the logged-in user’s home organization. For example, if superuser posts the following descriptor, the
server creates an organization with the name, ID, and alias of “HR” as a child of the root organization:

{
"alias":"HR"

}

110

Chapter 4 REST v2 - Administration Services

4.1.4 Modifying Organization Properties
To modify the properties of an organization, use the PUT method and specify the organization ID in the URL.
The request must include an organization descriptor with the values you want to change. You cannot change
the ID of an organization, only its name (used for display) and its alias (used for logging in).

Method URL

PUT http://<host>:<port>/jasperserver-pro/rest_v2/organizations/organizationID/

Content-Type Content

application/xml

application/json

A partial organization descriptor that includes the properties to change. Do
not specify the following properties:
• id – The organization ID is permanent and can never be modified.
• parentId – Organizations cannot change parents.
• tenantUri – Organizations cannot change the organization hierarchy.
• tenantFolderUri – The organization folder is automatically based on

its parent, which cannot be changed.

Return Value on Success Typical Return Values on Failure

200 OK – The organization was successfully updated. 400 Bad Request – When some dependent resources
cannot be resolved.

The following example shows a descriptor sent to update the name and description of an organization:

{
"tenantName":"Audit Dept",
"tenantDesc":"Audit Department of Finance Division"

}

4.1.5 Setting the Theme of an Organization
A theme determines how the JasperReports Server interface appears to users. Administrator can create and set
different themes for each organization. To set a theme through web services, use the PUT method of the REST
v2/organizations service to modify the corresponding property of the desired organization.

For example:

PUT http://localhost:8080/jasperserver-pro/rest_v2/organizations/Audit

{
"theme":"jasper_dark"

}

For more information about themes, see the JasperReports Server Administrator Guide.

111

JasperReports Server Web Services Guide

4.1.6 Deleting an Organization
To delete an organization, use the DELETE method and specify the organization ID in the URL. When deleting
an organization, all of its resources in the repository, all of its sub-organizations, all of its users, and all of its
roles are permanently deleted.

Method URL

DELETE http://<host>:<port>/jasperserver-pro/rest_v2/organizations/organizationID/

Return Value on Success Typical Return Values on Failure

204 No Content – The organization was successfully
deleted.

400 Bad Request – When attempting to delete the
organization of the logged-in user.

404 Not Found – When the ID of the organization
cannot be resolved.

4.2 The v2/users Service
The rest_v2/users service replaces the rest/user service. It provides similar methods that allow you to list, view,
create, modify, and delete user accounts, including setting role membership. The new service provides improved
search functionality, such as organization-based searches in commercial editions licensed to use organizations.
Every method has two URL forms, one with an organization ID and one without.

Because the user ID and organization ID are used in the URL, this service can operate only on users and
organizations whose ID is less than 100 characters long and does not contain spaces or special symbols. As with
resource IDs, the user ID is permanent and cannot be modified for the life of the user account.

4.2.1 Searching for Users
The GET method without any user ID searches for and lists user accounts. It has options to search for users by
name or by role. If no search is specified, it returns all users. The method has two forms:
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL without an organization ID.
• In commercial editions with organizations, use the first URL to list all users starting from the logged-in

user’s organization (root for the system admin), and use the second URL to list all users in a specified
organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/users?<arguments>
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users?<arguments>

Argument Type Description

search Optional
String

Specify a string or substring to match the user ID or full name of any user.
The search is not case sensitive.

112

Chapter 4 REST v2 - Administration Services

requiredRole Optional
String

Specify a role name to list only users with this role. Repeat this argument
to filter with multiple roles. In commercial editions with multiple
organizations, specify roles as <roleName>%7C<orgID> (%7C is the |
character).

hasAll
Required
Roles

Optional
Boolean

When set to false with multiple requiredRole arguments, users will match if
they have any of the given roles (OR operation). When true or not
specified, users must match all of the given roles (AND operation).

include
SubOrgs

Optional
Boolean

Limits the scope of the search or list in commercial editions with multiple
organizations. When set to false, the first URL form is limited to the logged-
in user’s organization, and the second URL form is limited to the
organization specified in the URL. When true or not specified, the scope
includes the hierarchy of all child organizations.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a set of descriptors for all
users in the result.

204 No Content – The search did not return any
users.

404 Not Found – When the organization ID does not
match any organization. The content includes an error
message.

The following example shows the first form of the URL on a community edition server:

GET http://localhost:8080/jasperserver/rest_v2/users?search=j

The response is a set of summary descriptors for all users containing the string “j”:

<users>
<user>
<externallyDefined>false</externallyDefined>
<fullName>jasperadmin User</fullName>
<username>jasperadmin</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<username>joeuser</username>

</user>
</users>

The next example shows the second form of the URL on a commercial edition server with multiple
organizations:

GET http://localhost:8080/jasperserver/rest_v2/organizations/Finance/users

On servers with multiple organizations, the summary user descriptors include the organization (tenant) ID:

113

JasperReports Server Web Services Guide

<users>
<user>
<externallyDefined>false</externallyDefined>
<fullName>jasperadmin</fullName>
<tenantId>Finance</tenantId>
<username>jasperadmin</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>jasperadmin</fullName>
<tenantId>Audit</tenantId>
<username>jasperadmin</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>joeuser</fullName>
<tenantId>Finance</tenantId>
<username>joeuser</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>joeuser</fullName>
<tenantId>Audit</tenantId>
<username>joeuser</username>

</user>
</users>

4.2.2 Viewing a User
The GET method with a user ID (username) retrieves a single descriptor containing the full list of user
properties and roles.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to specify users of the root organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the descriptor for the given
user.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

114

Chapter 4 REST v2 - Administration Services

The full user descriptor includes detailed information about the user account, including any roles. The following
example shows the descriptor in XML format:

GET http://localhost:8080/jasperserver/rest_v2/users/joeuser

<user>
<enabled>true</enabled>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<previousPasswordChangeTime>2013-04-19T18:53:07.602-07:00
</previousPasswordChangeTime>
<roles>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_USER</name>

</role>
</roles>
<username>joeuser</username>

</user>

In servers with multiple organizations, the full descriptor includes the organization (tenant) ID. The following
example shows the descriptor in JSON format:

GET http://localhost:8080/jasperserver/rest_v2/organizations/Finance/users/joeuser

{
"fullName":"joeuser",
"emailAddress":"",
"externallyDefined":false,
"enabled":true,
"previousPasswordChangeTime":1366429181984,
"tenantId":"Finance",
"username":"joeuser",
"roles":[
{"name":"ROLE_USER","externallyDefined":false}]

}

4.2.3 Creating a User
To create a user account, put all required information in a user descriptor, and include it in a PUT request to the
rest_v2/users service, with the intended user ID (username) specified in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to create users in the root organization.

To create a user, the user ID in the URL must be unique on the server or in the organization. If the user ID
already exists, that user account will be modified, as described in section 4.2.4, “Modifying User Properties,”
on page 116.

115

JasperReports Server Web Services Guide

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Content-Type Content

application/xml

application/json

A user descriptor that includes at least the fullName and password for the
user. The role ROLE_USER is automatically assigned to all users, so it does
not need to be specified. Do not specify the following properties:
• username – Specified in the URL and cannot be modified in the

descriptor.
• tenantID – Specified in the URL and cannot be modified in the

descriptor.
• externallyDefined – Computed automatically by the server.
• previousPasswordChangeTime – Computed automatically by the

server.

Return Value on Success Typical Return Values on Failure

201 Created – The user was successfully created
using the values in the descriptor. The response
contains the full descriptor of the new user.

404 Not Found – When the organization ID cannot be
resolved.

The descriptor sent in the request should contain all the properties you want to set on the new user, except for
the username that is specified in the URL. To set roles on the user, specify them as a list of roles. The following
example shows the descriptor in JSON format:

{
"fullName":"Joe User",
"emailAddress":"juser@example.com",
"enabled":false,
"password":"mySecretPassword",
"roles":[
{"name":"ROLE_MANAGER"}]

}

4.2.4 Modifying User Properties
To modify the properties of a user account, put all desired information in a user descriptor, and include it in a
PUT request to the rest_v2/users service, with the existing user ID (username) specified in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to modify users of the root organization.

To modify a user, the user ID in the URL must already exist on the server or in the organization. If the user ID
doesn’t exist, a user account will be created, as described in section 4.2.3, “Creating a User,” on page 115.

116

Chapter 4 REST v2 - Administration Services

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Content-Type Content

application/xml

application/json

A user descriptor that includes the properties you want to change. Do not
specify the following properties:
• username – Specified in the URL and cannot be modified in the

descriptor.
• tenantID – Specified in the URL and cannot be modified in the

descriptor.
• externallyDefined – Computed automatically by the server.
• previousPasswordChangeTime – Computed automatically by the

server.

Return Value on Success Typical Return Values on Failure

200 OK – The user properties were successfully
updated.

404 Not Found – When the organization ID cannot be
resolved.

To add a role to the user, specify the entire list of roles with the desired role added. To remove a role from a
user, specify the entire list of roles with the desired role removed. The following example shows the descriptor
in JSON format:

{
"enabled":true,
"password":"newPassword",
"roles":[
{"name":"ROLE_USER"}]
{"name":"ROLE_STOREMANAGER"}]

}

4.2.5 Deleting a User
To delete a user, send the DELETE method and specify the user ID in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to delete users of the root organization.

When this method is successful, the user is permanently deleted.

117

JasperReports Server Web Services Guide

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Return Value on Success Typical Return Values on Failure

204 No Content – The user was successfully deleted. 404 Not Found – When the ID of the organization
cannot be resolved.

4.3 The v2/attributes Service
Attributes, also called profile attributes, are name-value pairs associated with a user. Certain advanced features
such as Domain security and OLAP access grants use profile attributes in addition to roles to grant certain
permissions. Unlike roles, attributes are not pre-defined, and thus any attribute name can be assigned any value
at any time.

The rest_v2/attributes service replaces the rest/attribute service. It provides methods for reading, writing, and
deleting attributes on any given user account. All attribute operations apply to a single specific user; there are
no operations for reading or searching attributes from multiple users.

Because the user ID and organization ID are used in the URL, this service can operate only on users and
organizations whose ID is less than 100 characters long and does not contain spaces or special symbols. In
addition, both attribute names and attribute values being written with this service are limited to 255 characters
and may not be empty (null) or contain only whitespace characters.

4.3.1 Viewing User Attributes
The GET method of the attributes service retrieves the list of attributes, if any, defined for the user.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, you must use the second URL to specify the user’s organization.

When specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to specify users of the root organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID/attributes?<arguments>
http://<host>:<port>/jasperserver[-pro]/rest_
v2/organizations/orgID/users/userID/attributes? <arguments>

Argument Type Description

name Optional
String

Specify an attribute name to list the value of that specific attribute. Repeat
this argument to view multiple attributes. When this argument is omitted, all
attributes and their values are returned for the given user.

118

Chapter 4 REST v2 - Administration Services

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the list of attributes for the
given user.

204 No Content – The search did not return any
attributes or the user has no attributes.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

The list of attributes includes the name and value of each attribute. Each attribute may only have one value,
however that value may contain a comma-separated list that is interpreted by the server as being multi-valued.
The following example shows attributes in JSON format:

GET http://localhost:8080/jasperserver/rest_v2/users/joeuser/attributes

{
"attribute":[
{
"name": "Attr1",
"value":"Value1a, Value1b, Value1c"

},
...
{
"name": "AttrN",
"value":"ValueN"

}
]

}

An alternative syntax exists to read a single attribute by specifying its name in the URL:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID/attributes/attrName
http://<host>:<port>/jasperserver[-pro]/rest_
v2/organizations/orgID/users/userID/attributes/attrName

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a single attributes for the
given user.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

The response is a single attribute name-value pair. The following example shows an attribute in JSON format:

119

JasperReports Server Web Services Guide

GET http://localhost:8080/jasperserver/rest_v2/users/joeuser/attributes/Attr2

{
"name": "Attr2",
"value":"Value2"

}

4.3.2 Setting User Attributes
The PUT method of the attributes service adds or replaces attributes on the specified user.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, you must use the second URL to specify the user’s organization.

When specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to specify users of the root organization.

There are two syntaxes, the following one is for adding or replacing all attributes

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID/attributes
http://<host>:<port>/jasperserver[-pro]/rest_
v2/organizations/orgID/users/userID/attributes

Content-Type Content

application/xml

application/json

An attribute descriptor that includes the new list of attributes. All previously
defined attributes are replaced by this new list.

Return Value on Success Typical Return Values on Failure

201 Created – When the attributes were successfully
created for the user.

200 OK – When the attributes were successfully
updated.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

400 Bad Request – When an attribute name or value
is null, blank, or too long. If one attribute causes an
error, the operation stops and returns an error, but
attributes that were already processed remain in their
new state.

The list of attributes defines the name and value of each attribute. Each attribute may only have one value,
however, that value may contain a comma separated list that is interpreted by the server as being multi-valued.

{
"attribute":[
{
"name": "Attr1",
"value":"newValue1"

},
{

120

Chapter 4 REST v2 - Administration Services

"name": "Attr2",
"value":"newValue2a, newValue2b"

}
]

}

The second syntax of the PUT attributes method is for adding or replacing individual attributes.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID/attributes/attrName
http://<host>:<port>/jasperserver[-pro]/rest_
v2/organizations/orgID/users/userID/attributes/attrName

Content-Type Content

application/xml

application/json

A single attribute name-value pair. The attribute name must match the
attrName exactly as it appears in the URL. If this attribute name already
exists on the specified user, this attribute’s value is updated. If the attribute
does not exist, it is added to the user’s list of attributes.

Return Value on Success Typical Return Values on Failure

201 Created – When the attribute was successfully
created for the user.

200 OK – When the attribute was successfully
updated.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

The content in the request is a single attribute, for example:

PUT http://localhost:8080/jasperserver/rest_v2/users/joeuser/attributes/Attr3

{
"name": "Attr3",
"value":"NewValue3"

}

4.3.3 Deleting User Attributes
The DELETE method of the attributes service removes attributes from the specified user. When attributes are
removed, both the name and the value of the attribute are removed, not only the value.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, you must use the second URL to specify the user’s organization.

When specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to specify users of the root organization.

There are two syntaxes; the following one is for deleting multiple attributes or all attributes at once.

121

JasperReports Server Web Services Guide

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID/attributes?<arguments>
http://<host>:<port>/jasperserver[-pro]/rest_
v2/organizations/orgID/users/userID/attributes? <arguments>

Argument Type Description

name Optional
String

Specify an attribute name to remove that attribute from the user. Repeat this
argument to delete multiple attributes. When this argument is omitted, all
attributes are deleted from the given user.

Return Value on Success Typical Return Values on Failure

204 No Content – The attributes were successfully
removed from the user.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

400 Bad Request – When an attribute name is null,
blank, or too long. If one attribute causes an error, the
operation stops and returns an error, but attributes
that were already deleted remain deleted.

The second syntax deletes a single attribute named in the URL from the specified user.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID/attributes/attrName
http://<host>:<port>/jasperserver[-pro]/rest_
v2/organizations/orgID/users/userID/attributes/attrName

Return Value on Success Typical Return Values on Failure

204 No Content – The attribute was successfully
removed from the user.

404 Not Found – When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

400 Bad Request – When an attribute name is null,
blank, or too long.

4.4 The v2/roles Service
The rest_v2/roles service replaces the rest/role service. It provides similar methods that allow you to list, view,
create, modify, and delete roles. The new service provides improved search functionality, including user-based
role searches. Every method has two URL forms, one with an organization ID and one without.

Because the role ID and organization ID are used in the URL, this service can operate only on roles and
organizations whose ID is less than 100 characters long and does not contain spaces or special symbols. Unlike
resource IDs, the role ID is the role name and can be modified.

122

Chapter 4 REST v2 - Administration Services

4.4.1 Searching for Roles
The GET method without any role ID searches for and lists role definitions. It has options to search for roles by
name or by user that belong to the role. If no search is specified, it returns all roles. The method has two forms:
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL without an organization ID.
• In commercial editions with organizations, use the first URL to search or list all roles starting from the

logged-in user’s organization (root for the system admin), and use the second URL to search or list all roles
in a specified organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/roles?<arguments>
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles?<arguments>

Argument Type Description

search Optional
String

Specify a string or substring to match the role ID of any role. The search is
not case sensitive.

user Optional
String

Specify a username (ID) to list the roles to which this user belongs. Repeat
this argument to list all roles of multiple users. In commercial editions with
multiple organizations, specify users as <userID>%7C<orgID> (%7C is the
| character).

hasAllUsers Optional
Boolean

When set to true with multiple user arguments, this method returns only the
roles to which all specified users belong (intersection of users’ roles).
When false or not specified, all roles of all users are found (union of users’
roles).

include
SubOrgs

Optional
Boolean

Limits the scope of the search or list in commercial editions with multiple
tenants. When set to false, the first URL form is limited to the logged-in
user’s organization, and the second URL form is limited to the
organization specified in the URL. When true or not specified, the scope
includes the hierarchy of all child organizations.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a set of descriptors for all
roles in the result.

204 No Content – The search did not return any roles.

404 Not Found – When the organization ID does not
match any organization. The content includes an error
message.

The following example shows the first form URL on a commercial edition server with multiple organizations:

GET http://localhost:8080/jasperserver/rest_v2/roles

123

JasperReports Server Web Services Guide

This method returns the set of all default system and root roles defined on a server with the sample data (no
organization roles have been defined yet):

<roles>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_ADMINISTRATOR</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_ANONYMOUS</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_DEMO</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_PORTLET</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_SUPERMART_MANAGER</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_SUPERUSER</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_USER</name>

</role>
</roles>

The externallyDefined property is true when the role is synchronized from a 3rd party such as an
LDAP directory or single sign-on mechanism. For more information, see the JasperReports Server
Authentication Cookbook.

4.4.2 Viewing a Role
The GET method with a role ID retrieves a single role descriptor containing the role properties.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the role’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to specify roles of the root organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

124

Chapter 4 REST v2 - Administration Services

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the descriptor for the given
role.

404 Not Found – When the role ID or organization ID
does not match any role or organization. The content
includes an error message.

After adding roles to an organization, the following example shows the simple role descriptor for an
organization role in JSON format:

GET http://localhost:8080/jasperserver-pro/rest_v2/organizations/Finance/roles/ROLE_MANAGER

{
"name":"ROLE_MANAGER",
"externallyDefined":false,
"tenantId":"Finance"

}

4.4.3 Creating a Role
To create a role, send the PUT request to the rest_v2/roles service with the intended role ID (name) specified in
the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to create roles in the root organization.

Roles do not have any properties to specify other than the role ID, but the request must include a descriptor that
can be empty.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

125

JasperReports Server Web Services Guide

Content-Type Content

application/xml

application/json

An empty role descriptor, either <role></role> or {}. Do not specify the
following properties:
• name – Specified in the URL and should not be modified in the

descriptor.
• tenantID – Specified in the URL and cannot be modified in the

descriptor.
• externallyDefined – Computed automatically by the server.

Return Value on Success Typical Return Values on Failure

201 Created – The role was successfully created. The
response contains the full descriptor of the new role.

404 Not Found – When the organization ID cannot be
resolved.

4.4.4 Modifying a Role
To change the name of a role, send a PUT request to the rest_v2/roles service and specify the new name in the
role descriptor.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to modify roles in the root organization.

The only property of a role that you can modify is the role’s name. After the update, all members of the role are
members of the new role name, and all permissions associated with the old role name are updated to the new
role name.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

Content-Type Content

application/xml

application/json

A role descriptor containing a single property:
• name – The new name for the role.

Return Value on Success Typical Return Values on Failure

200 OK – The role was successfully updated. The
response contains the full descriptor of the updated
role.

404 Not Found – When the organization ID cannot be
resolved.

126

Chapter 4 REST v2 - Administration Services

4.4.5 Setting Role Membership
To assign role membership to a user, set the roles property on the user account with the PUT method of the rest_
v2/users service. For details, see section 4.2.4, “Modifying User Properties,” on page 116.

4.4.6 Deleting a Role
To delete a role, send the DELETE method and specify the role ID (name) in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of

the URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin
(superuser), use the first URL to delete roles of the root organization.

When this method is successful, the role is permanently deleted.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

Return Value on Success Typical Return Values on Failure

204 No Content – The role was successfully deleted. 404 Not Found – When the ID of the organization
cannot be resolved.

127

JasperReports Server Web Services Guide

128

CHAPTER 5 REST V1 - REPOSITORY SERVICES
This chapter documents the HTTP methods (sometimes called verbs) and parameters for each of these requests.
In every case, you specify the folder, resource, or report to be acted up by adding its repository URI to the
request URL. This chapter uses the following notation:

http://<host>:<port>/jasperserver[-pro]/rest/<service>/path/to/object

Arguments are passed in the URL with the conventional syntax:

http://<host>:<port>/jasperserver[-pro]/rest/<service>/path/to/object?<arg1>=<value>&<arg2>=<value>&...

The documentation for each method gives the list of arguments it supports. Optional arguments are listed with a
question mark after the name, for example <arg2>?. Arguments that are not marked optional are mandatory and
must be included in the URL with a valid value.

For authentication using the REST web services, see section 1.2, “REST Authentication,” on page 12.

The RESTful repository services gives responses that contain the same XML data structure that are used in the
SOAP repository web service. These data structures are shown as examples throughout the chapter and
documented in section 1.6, “Syntax of resourceDescriptor,” on page 18, with reference material in Appendix
A, “ResourceDescriptor API Constants,” on page 217.

This chapter includes the following sections:
• The resources Service
• The resource Service
• Working with Dashboards
• Working with Virtual Data Sources
• Working with Domains
• The permission Service

5.1 The resources Service
The resources service lets you browse or search the repository. When used without arguments, it gives the list of
resources in the folder specified in the URL. With the arguments, you can search for terms in the resource names
or descriptions, search for all resources of a given type, and specify whether to search in subfolders. This service
is similar to the list operation in the SOAP web services.

The resources service is a read only service. Requests for PUT, POST, and DELETE operations receive the error
405, method not allowed.

129

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/resources/path/to/folder/

Argument Type/Value Description

q? String Match only resources having the specified text in the name or description.
Note that the search string does not match in the ID of resources.

type? wsType Match only resources of the given type. Valid types are listed in Table 1-5,
“Values for wsType,” on page 19, for example: datasource, reportUnit, img,
folder.

Searching by type does not always yield the expected results when using
newer versions of the server (5.0 and later). New repository types may
appear unexpectedly in the results. The v2/resources service resolves this
issue, but the (v1) resources service is deprecated and will no longer be
updated.

recursive? 0 | 1 Search for resources recursively and not only in the specified folder. This
parameter is used only when a search criteria is specified (either q or type).
When not specified, the default is 0, meaning only in the specified folder.

Note that searching recursively in the whole repository may cause
performance issues, because the number of resources returned may be
huge.

limit? Integer >= 0 Maximum number of items returned to the client. The default is 0, meaning
no limit.

Return Value on Success Typical Return Values on Failure

200 OK – The body is XML containing the list of
resourceDescriptors.

404 Not Found – The specified URI is not found in the
repository.

The XML content in the result consists of resourceDescriptors described in section 1.6, “Syntax of
resourceDescriptor,” on page 18. However, the list may be empty in the following conditions:
• If the specified URI is a resource instead of a folder.
• If the folder is empty or the search returns no results.

The following example shows the request to list the resources in the /reports folder:

GET /jasperserver/rest/resources/reports HTTP/1.1
User-Agent: Jakarta Commons-HttpClient/3.1
Authorization: Basic amFzcGVyYWRtaW46amFzcGVyYWRtaW4=
Host: localhost:8080
Cookie: $Version=0; JSESSIONID=6854BF45EC89F3D3CE3E6F4FD6FF1BBD; $Path=/jasperserver

Because the example is not a recursive search, it simply returns the contents of the folder, in this case a
subfolder and a report:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1

130

Chapter 5 REST v1 - Repository Services

Pragma: No-cache
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 01:00:00 CET
Content-Length: 1518
Date: Fri, 24 Jun 2011 12:09:45 GMT

<resourceDescriptors>
<resourceDescriptor name="samples" wsType="folder" uriString="/reports/samples"

isNew="false">
<label>Samples</label>
<description>Samples</description>
<creationDate>1302268917000</creationDate>
<resourceProperty name="PROP_HAS_DATA"><value>false</value></resourceProperty>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Folder</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER"><value>/reports</value>
</resourceProperty>
<resourceProperty name="PROP_SECURITY_PERMISSION_MASK"><value>31</value>
</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>

</resourceDescriptor>

<resourceDescriptor name="test" wsType="reportUnit" uriString="/reports/test"
isNew="false">

<label>A test</label>
<creationDate>1303206124000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.

 ReportUnit</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER"><value>/reports</value>
</resourceProperty>
<resourceProperty name="PROP_SECURITY_PERMISSION_MASK"><value>31</value>
</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>19</value></resourceProperty>
<resourceProperty name="PROP_RU_ALWAYS_PROPMT_CONTROLS"><value>true</value>
</resourceProperty>
<resourceProperty name="PROP_RU_CONTROLS_LAYOUT"><value>1</value>
</resourceProperty>

</resourceDescriptor>
</resourceDescriptors>

The following sample request is intended to list all the reports available in the /reports folder and subfolders.
The result, not shown, is a long list of resourceDescriptors for reports in the designated folders.

GET /jasperserver/rest/resources/reports?type=reportUnit&recursive=1 HTTP/1.1
User-Agent: Jakarta Commons-HttpClient/3.1
Authorization: Basic amFzcGVyYWRtaW46amFzcGVyYWRtaW4=
Host: localhost:8080
Cookie: $Version=0; JSESSIONID=60B573BDC47098E6379FC867B24C5C0E; $Path=/jasperserver

5.2 The resource Service
The resource service supports several HTTP methods to view, download, create, and modify resources in the
repository.

GET is used to show the information about a specific resource. Getting a resource can serve several purposes:

131

JasperReports Server Web Services Guide

• In the case of JasperReports, also known as report units, this service returns the structure of the
JasperReport, including resourceDescriptors for any linked resources.

• For resources that contain files, specifying the fileData=true argument downloads the file content.
• Specifying a query-based input control with arguments for running the query returns the dynamic values for

the control.

A new service is also available to interact with report options. See “The v2/options Service” on
page 87.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/resource/path/to/resource/?<arguments>

Argument Type/Value Description

fileData? Boolean For resources that contain a file, set this argument to true to download the
file. When not specified, this argument is false by default and the method
returns the description of the resource.

IC_GET_
QUERY_
DATA?

String Used to get the items to fill an input control which subtend a query resource.
The value of this parameter must be the URI of the data source to use to
execute the query. Set the null string to use the default data source.

P_<param
name>?

String If the IC_GET_QUERY_DATA is specified, one or more parameters can be
specified to be used in the query:
• Use the "P_" prefix for single values.
• Use the "PL_" prefix for list of values.PL_<param

name>?
String

Return Value on Success Typical Return Values on Failure

200 OK – The body is either:
• XML giving the resourceDescriptors that make up

the resource, including nested descriptors.
• The native content of the specified file.

404 Not Found – When the specified resource URI is
not found in the repository

The GET method returns the structure and definition of resources in the repository, and using that information
can be used to download any files attached to the resources. Resources are defined through
resourceDescriptor tags in XML.

The following example shows the resource descriptor of a folder:

<resourceDescriptor name="datasources" wsType="folder" uriString="/datasources"
isNew="false">

<label>Data Sources</label>
<description>Data Sources used by reports</description>
<creationDate>1317838605320</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Folder</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER"><value>/</value></resourceProperty>

132

Chapter 5 REST v1 - Repository Services

<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>false</value></resourceProperty>

</resourceDescriptor>

The following example shows the resource descriptor of a data source. The various resourceProperty tags
define the properties of the data source, specific to the JNDI type:

<resourceDescriptor name="SugarCRMDataSourceJNDI" wsType="jndi"
uriString="/analysis/datasources/SugarCRMDataSourceJNDI" isNew="false">
<label>SugarCRM Data Source JNDI</label>
<description>SugarCRM Data Source JNDI</description>
<creationDate>1318380229907</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.

 JndiJdbcReportDataSource</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER"><value>/analysis/datasources</value>
</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_DATASOURCE_JNDI_NAME"><value>jdbc/sugarcrm</value>
</resourceProperty>

</resourceDescriptor>

The following example shows the resource descriptor of a query resource, with properties for the query string
and query language:

<resourceDescriptor name="CustomerCityQuery" wsType="query"
uriString="/datatypes/CustomerCityQuery" isNew="false">
<label>Customer City Query</label>
<description>Retrieves names of all customers' home cities</description>
<creationDate>1318380317602</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Query</value>

</resourceProperty><resourceProperty name="PROP_PARENT_FOLDER">
<value>/JUNIT_NEW_FOLDER</value></resourceProperty>

<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>false</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>false</value></resourceProperty>
<resourceProperty name="PROP_QUERY">
<value>select distinct customer.city from customer</value></resourceProperty>

<resourceProperty name="PROP_QUERY_LANGUAGE"><value>sql</value></resourceProperty>
</resourceDescriptor>

5.2.1 Requesting the Contents of a JasperReport
A JasperReport is a complex resource that contains many parts such as a data source, input controls, and file
resources. These can be either references to other resources in the repository or resources that are fully defined
internally to the report.

In the following example, a simple request gives the contents of a JasperReport:

GET http://localhost:8080/jasperserver/rest/resource/reports/samples/AllAccounts

The following response in this example shows the content of the AllAccounts report:
• The reportUnit, which is the container for all the resources of the report.
• The data source, which is an external link to a data source in the repository.

133

JasperReports Server Web Services Guide

• The main JRXML, which is a file defined internally to this resource.
• Two image files, one of which is defined internally to this resource, the other references a file resource in

the repository.

The structure of the JasperReport is defined through nested resourceDescriptor tags in XML. In the nested
descriptor for each file that is part of the JasperReport, we can find its URI and use fileData=true to retrieve
that file:

<resourceDescriptor name="AllAccounts" wsType="reportUnit"
uriString="/reports/samples/AllAccounts" isNew="false">

<label>Accounts Report</label>
<description>All Accounts Report</description>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.

 ReportUnit</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER"><value>/reports/samples</value>
</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>2</value></resourceProperty>
<resourceProperty name="PROP_RU_ALWAYS_PROPMT_CONTROLS"><value>false</value>
</resourceProperty>
<resourceProperty name="PROP_RU_CONTROLS_LAYOUT"><value>1</value>
</resourceProperty>

<resourceDescriptor name="" wsType="datasource" uriString="" isNew="false">
<label>null</label>
<resourceProperty name="PROP_REFERENCE_URI">
<value>/datasources/JServerJNDIDS</value>

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>true</value>
</resourceProperty>

</resourceDescriptor>

<resourceDescriptor name="AllAccountsReport" wsType="jrxml" uriString="/reports/
samples/AllAccounts_files/AllAccountsReport" isNew="false">

<label>All Accounts Jasper Report</label>
<description>All Accounts Jasper Report</description>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples/AllAccounts_files</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>2</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>false</value>
</resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>true</value></resourceProperty>
<resourceProperty name="PROP_ATTACHMENT_ID"><value>attachment</value>
</resourceProperty>
<resourceProperty name="PROP_RU_IS_MAIN_REPORT"><value>true</value>
</resourceProperty>

</resourceDescriptor>

<resourceDescriptor name="AllAccounts_Res2" wsType="img" uriString="/reports/

134

Chapter 5 REST v1 - Repository Services

samples/AllAccounts_files/AllAccounts_Res2" isNew="false">
<label>AllAccounts_Res2</label>
<description>AllAccounts_Res2</description>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples/AllAccounts_files</value></resourceProperty>

<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>false</value>
</resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>true</value></resourceProperty>
<resourceProperty name="PROP_ATTACHMENT_ID"><value>attachment</value>
</resourceProperty>

</resourceDescriptor>

<resourceDescriptor name="AllAccounts_Res3" wsType="img" uriString="/reports/
samples/AllAccounts_files/AllAccounts_Res3" isNew="false">

<label>AllAccounts_Res3</label>
<description>AllAccounts_Res3</description>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

</value></resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples/AllAccounts_files</value></resourceProperty>

<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>false</value>
</resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>true</value></resourceProperty>
<resourceProperty name="PROP_ATTACHMENT_ID"><value>attachment</value>
</resourceProperty>

</resourceDescriptor>

<resourceDescriptor name="LogoLink" wsType="reference" uriString="/reports/
samples/AllAccounts_files/LogoLink" isNew="false">

<label>LogoLink_label</label>
<description>LogoLink description</description>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource
</value></resourceProperty>

<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples/AllAccounts_files</value></resourceProperty>

<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>true</value>
</resourceProperty>
<resourceProperty name="PROP_REFERENCE_URI"><value>/images/JRLogo</value>
</resourceProperty>

<resourceProperty name="PROP_HAS_DATA"><value>true</value></resourceProperty>
<resourceProperty name="PROP_ATTACHMENT_ID"><value>attachment</value>
</resourceProperty>

</resourceDescriptor>
</resourceDescriptor>

135

JasperReports Server Web Services Guide

5.2.2 Requesting the Contents of a File Resource
In order to retrieve the contents of a file, first retrieve the descriptor of its enclosing resource to find the resource
URI. The resource can either be internal to the report, or referenced from the repository. In either case it has a
URI in the repository that we can extract from the parent resource.

In the previous sample, we see the attachments that are internal to the AllAccounts report. There is an image
named AllAccounts_Res3 that is not a reference and has data. To download the image, we create the
following request to the resource service, giving it the internal URI of the image and fileData=true.

GET /jasperserver/rest/resource/reports/samples/AllAccounts_files/AllAccounts_Res3?
fileData=true HTTP/1.1
User-Agent: Jakarta Commons-HttpClient/3.1
Authorization: Basic amFzcGVyYWRtaW46amFzcGVyYWRtaW4=
Host: localhost:8080
Cookie: $Version=0; JSESSIONID=6854BF45EC89F3D3CE3E6F4FD6FF1BBD; $Path=/jasperserver

Notice that the URI to the file includes the path AllAccounts_files. This is a local path that exists to
access the local resources of the report, not a folder that exists in the repository.

In the case of a resource that is referenced in the repository, you can download the contents of the file in the
same way. From the resource descriptor in the previous section, we see there is another resource where PROP_
IS_REFERENCE is true. We can extract the repository URI from the PROP_REFERENCE_URI property and use
that with fileData=true to obtain the image:

GET /jasperserver-pro/rest/resource/images/JRLogo?fileData=true HTTP/1.1
User-Agent: Jakarta Commons-HttpClient/3.1
Authorization: Basic amFzcGVyYWRtaW46amFzcGVyYWRtaW4=
Host: localhost:8080
Cookie: $Version=0; JSESSIONID=6854BF45EC89F3D3CE3E6F4FD6FF1BBD; $Path=/jasperserver

In both cases, the response contains the binary contents of the file. The response header contains the information
to decode it:

Content-Disposition: attachment; filename=JRLogo
Content-Type: application/octet-stream
Content-Length: 1491

The descriptor does not store the extension nor the format of a file resource. Jaspersoft recommends
using the filename with the file extension as the resource ID when creating file resources so that the
extension is available when downloading the file.

5.2.3 Requesting the Values of a Query-Based Input Control

A newer service is available to interact with input controls, including query-based input controls. See
section 3.3, “The v2/inputControls Service,” on page 83.

The following sample request specifies a resource that is a query-based input control, and by specifying the
appropriate parameters, we can receive the current values. In this case, one of the parameters to the query is a list
of two values, USA and Mexico:

136

Chapter 5 REST v1 - Repository Services

GET http://localhost:8080/jasperserver/rest/resource/reports/samples/Cascading_multi_select_report_files/
Cascading_state_multi_select?IC_GET_QUERY_DATA=/datasources/JServerJNDIDS&
PL_Country_multi_select=USA&PL_Country_multi_select=Mexico

The following response shows the resource descriptor for the requested input control, and it contains extra
properties that give all the values that are the results of the query. You can see they are from Mexico and USA.
The resource descriptor also includes the nested descriptor for the query that is part of the input control.

If a selection-type input control has a null value, it is given as ~NULL~. If no selection is made, its
value is given as ~NOTHING~.

<resourceDescriptor name="Cascading_state_multi_select" wsType="inputControl"
uriString="/reports/samples/Cascading_multi_select_report_files/
Cascading_state_multi_select" isNew="false">

<label>Cascading state multi select control</label>
<description>Cascading state multi select control</description>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.InputControl
</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples/Cascading_multi_select_report_files</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>false</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>false</value></resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_IS_MANDATORY"><value>true</value>
</resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_IS_READONLY"><value>false</value>
</resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_IS_VISIBLE"><value>true</value>
</resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_TYPE"><value>7</value>
</resourceProperty>
<resourceProperty name="PROP_QUERY_VALUE_COLUMN">
<value>billing_address_state</value></resourceProperty>

<resourceProperty name="PROP_QUERY_VISIBLE_COLUMNS">
<resourceProperty name="PROP_QUERY_VISIBLE_COLUMN_NAME">
<value>billing_address_country</value></resourceProperty>

<resourceProperty name="PROP_QUERY_VISIBLE_COLUMN_NAME">
<value>billing_address_state</value></resourceProperty>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA">
<resourceProperty name="PROP_QUERY_DATA_ROW"><value>DF</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Mexico</value></resourceProperty>

<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>DF</value></resourceProperty>

</resourceProperty>

...
<resourceProperty name="PROP_QUERY_DATA_ROW"><value>Zacatecas</value>

137

JasperReports Server Web Services Guide

<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Mexico</value></resourceProperty>

<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Zacatecas</value></resourceProperty>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW"><value>CA</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>USA</value></resourceProperty>

<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>CA</value></resourceProperty>

</resourceProperty>
...
<resourceProperty name="PROP_QUERY_DATA_ROW"><value>WA</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>USA</value></resourceProperty>

<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>WA</value></resourceProperty>

</resourceProperty>
</resourceProperty>
<resourceDescriptor name="Cascading_state_query" wsType="query" uriString="/

reports/samples/Cascading_multi_select_report_files/
Cascading_state_multi_select_files/Cascading_state_query"
isNew="false">

<label>Cascading state query</label>
<creationDate>1302268918000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Query</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples/Cascading_multi_select_report_files/

 Cascading_state_multi_select_files</value></resourceProperty>
<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>false</value></resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE"><value>false</value>
</resourceProperty>
<resourceProperty name="PROP_QUERY">
<value>select distinct billing_address_state, billing_address_country

 from accounts where $X{IN, billing_address_country,
 Country_multi_select} order by billing_address_country,
 billing_address_state</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_LANGUAGE"><value>sql</value>
</resourceProperty>
<resourceDescriptor name="" wsType="datasource" uriString="" isNew="false">
<label>null</label>
<resourceProperty name="PROP_REFERENCE_URI">
<value>/datasources/JServerJNDIDS</value></resourceProperty>

<resourceProperty name="PROP_IS_REFERENCE"><value>true</value>
</resourceProperty>

</resourceDescriptor>
</resourceDescriptor>

</resourceDescriptor>

5.2.4 Creating a Resource
The PUT method on the resource service is used to create a new resource. If the resource has one or more file
resources, they must be provided using a multipart request.

138

Chapter 5 REST v1 - Repository Services

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest/resource/path/to/resource/

Argument Type/Value Description

Resource
Descriptor

String This parameter identifies the part with an XML resource descriptor in a
multipart request. This is a required argument when using multipart
requests.

Content-Type Content

multipart/form-data

text/plain (in the first part)

application/octet-stream (for
files)

A well-formed XML resourceDescriptor that fully describes the resource,
including any locally defined resources. File resources are uploaded in
separate parts.

Return Value on Success Typical Return Values on Failure

201 Created – The body is XML containing the
resourceDescriptor of the resource just created.

An error if the resource cannot be created for some
reason. If you have very large files, see section 5.2.5,
“Setting the Temporary Upload Directory,” on
page 140.

In the following sample request, the URI is the location where we want to create the resource, in this case / (the
root), and the content includes the resource descriptor for a new folder called myfolder.

PUT /jasperserver/rest/resource/ HTTP/1.1
Content-Length: 473
Content-Type: multipart/form-data; boundary=1afdzzMUQLfSOmu0Pgb2F-nmEnTwWuPf3
Host: localhost:8080
User-Agent: Apache-HttpClient/4.1.1 (java 1.5)
Cookie: JSESSIONID=3370EC843B09363C0A8DD09A2D1F21E3
Cookie2: $Version=1
--1afdzzMUQLfSOmu0Pgb2F-nmEnTwWuPf3
Content-Disposition: form-data; name="ResourceDescriptor"
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 8bit
<resourceDescriptor name="myfolder" wsType="folder" uriString="/myfolder"

isNew="false">
<label>REST created folder</label>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/</value>

</resourceProperty>
</resourceDescriptor>
--1afdzzMUQLfSOmu0Pgb2F-nmEnTwWuPf3--

Also, the example above shows a multi-part request even though it is only sending the plain-text resource
descriptor and not a binary file. Usually, such requests could be sent without multiple parts, and multiple parts
are used to send a binary file, for example when creating a report.

When the ResourceDescriptor contains the ResourceProperty PROP_PARENT_FOLDER, that property
overrides the path/to/resource given as the URL and determines the location of the new resource.

139

JasperReports Server Web Services Guide

The response to the PUT request is the complete resource descriptor for the new folder:

HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
Cache-Control: no-cache
Content-Length: 648
Date: Mon, 01 Aug 2011 14:44:05 GMT
<resourceDescriptor name="myfolder" wsType="folder" uriString="/myfolder"

isNew="false">
<label>REST created folder</label>
<creationDate>1312209845000</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Folder</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>0</value>

</resourceProperty>
<resourceProperty name="PROP_HAS_DATA">
<value>false</value>

</resourceProperty>
</resourceDescriptor>

5.2.5 Setting the Temporary Upload Directory
When you create a resource by uploading a large file, the server stores the file in a temporary location while
receiving and processing it. Uploaded files may be huge and cause errors if the local disk is limited or full. If
you are having issues when creating resources with large files, set the following property to a directory location
with sufficient capacity.

Temporary Upload Directory for Web Services

Configuration File

…\WEB-INF\applicationContext-webservices.xml

Property Bean Description

attachmentsTempFolder man-
agementServiceImpl

Change this property to an absolute path such as
/tmp/jasperserver/axis_attachments or a relative
path such as {java.io.tmpdir}/jasperserver/axis_
attachments.

5.2.6 Modifying a Resource
The POST method on the resource service is used to modify a resource. If the resource has one or more file
resources, they must be provided using a multipart request. A POST operates on the URL of an existing
resource, otherwise it is identical to the PUT method for a new resource.

140

Chapter 5 REST v1 - Repository Services

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest/resource/path/to/resource/

Argument Type/Value Description

Resource
Descriptor

String This parameter identifies the part with an XML resource descriptor in a
multipart request. This is a required argument when using multipart
requests.

Content-Type Content

multipart/form-data

text/plain (in the first part)

application/octet-stream (for
files)

A well-formed XML resourceDescriptor that fully describes the modified
resource, including any locally defined resources. File resources are
uploaded in separate parts.

Return Value on Success Typical Return Values on Failure

201 Created – The body is XML containing the
resourceDescriptor of the resource just modified.

An error if the resource cannot be modified for some
reason.

5.2.7 Copying or Moving a Resource
The POST method on the resource service also has parameters to copy or move a resource. Both folders and
individual resources can be copied or moved. The ID of the resource being copied or moved must be unique
within the destination folder, otherwise the operation will fail. This implies that copying cannot be used to
duplicate a resource within the same folder.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest/resource/path/to/resource/?<argument>

Argument Type/Value Description

copyTo? /path/to/folder Destination folder in the repository.

moveTo? /path/to/folder Destination folder in the repository.

Return Value on Success Typical Return Values on Failure

200 OK– The resource was successfully moved or
copied.

An error if the resource cannot be moved or copied, for
example if a resource with the same ID already exists in
the destination folder.

5.2.8 Deleting a Resource
The DELETE method can be used with either a folder or a resource. For the delete to succeed:

141

JasperReports Server Web Services Guide

• The logged in user must have read-delete, read-write-delete, or administer permission on the folder or
resource.

• The resource must not be a dependency of any other resource, for example the data source of a JasperReport.
In this case, you must modify or delete the other resource first.

• If the target is a folder, the above requirements must be satisfied for every resource and folder it contains,
including any those contained recursively in subfolders to any level.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest/resource/path/to/resource/

Return Value on Success Typical Return Values on Failure

200 OK – The resource was deleted. 404 Not Found – When the specified resource URI is
not found in the repository

5.3 Working with Dashboards

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

The resource service also gives access to dashboard resources in commercial editions of JasperReports Server.
Dashboards are managed as normal resources whose descriptors can be created, viewed, modified, or deleted
with the resource service. However, dashboards can be viewed only through the web interface of JasperReports
Server because they do not have any output format that can be generated or transmitted through the REST API.

Therefore, an application using the REST API can only manipulate the definition of the dashboard, that is the
selection of reports to display and their layout. In order to work with a dashboard, your application must parse
its resource descriptor, make changes, and generate a new, valid descriptor to send back to the server.

The general structure of a dashboard descriptor contains:
• Typical descriptor properties such as label, description, and PROP_PARENT_FOLDER.
• The dashboardState descriptor containing:

• The ADHOC_FRAMES property that lists the reports, labels, and buttons, and gives their coordinates in the
dashboard.

• The ADHOC_PROPERTIES property that gives the overall dashboard layout properties.
• reference descriptors for each of the reports included in the ADHOC_FRAMES property. These references

ensure that the reports can’t be deleted from the repository as long as they are used in this dashboard.

The following example shows the contents of a dashboard’s resource descriptor:

<resourceDescriptor name="SampleDashboard"
wsType="dashboard" uriString="/Dashboards/SampleDashboard" isNew="false">
<label>Sample Dashboard</label>
<description>Created in Dashboard Designer, viewed through REST.</description>
<creationDate>1318380317305</creationDate>

142

Chapter 5 REST v1 - Repository Services

<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.ji.adhoc.DashboardResource</value></resourceProperty>

<resourceProperty name="PROP_PARENT_FOLDER"><value>/Dashboards</value>
</resourceProperty>
<resourceProperty name="PROP_VERSION"><value>0</value></resourceProperty>
<resourceProperty name="PROP_HAS_DATA"><value>false</value></resourceProperty>
<resourceDescriptor name="" wsType="dashboardState" uriString="" isNew="false">
<label>null</label>
<creationDate>1318380317305</creationDate>
<resourceProperty name="PROP_RESOURCE_TYPE"><value>dashboardState</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/Dashboards/SampleDashboard</value></resourceProperty>

<resourceProperty name="ADHOC_PAPER_SIZE"><value>content</value>
</resourceProperty>
<resourceProperty name="ADHOC_FRAMES">
<value>frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameLeft=0;

frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameTop=0;
frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameWidth=246;
frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameHeight=405;
frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceType=
com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.ReportUnit;

frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceName=
Top Fives Report;

frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameSource=%2Fflow.html
%3F_flowId%3DviewReportFlow%26viewAsDashboardFrame%3Dtrue%26reportUnit%3D;

frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashResourceIndex=0;
frame_1,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameScrollBars=false;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameLeft=254;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameTop=0;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameWidth=450;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameHeight=418;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceType=
com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.ReportUnit;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceName=
Sales By Month Report;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameSource=%2Fflow.html
%3F_flowId%3DviewReportFlow%26viewAsDashboardFrame%3Dtrue%26reportUnit%3D;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashResourceIndex=1;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameScrollBars=false;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceType=
com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.ReportUnit;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceName=
Sales By Month Report;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameSource=%2Fflow.html
%3F_flowId%3DviewReportFlow%26viewAsDashboardFrame%3Dtrue%26reportUnit%3D;

frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashResourceIndex=1;
frame_2,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameScrollBars=false;
frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameLeft=712;
frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameTop=0;
frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameWidth=200;
frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameHeight=350;
frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceType=
com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.ReportUnit;

frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameResourceName=

143

JasperReports Server Web Services Guide

Sales Gauges Report;

frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameSource=%2Fflow.html
%3F_flowId%3DviewReportFlow%26viewAsDashboardFrame%3Dtrue%26reportUnit%3D;

frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashResourceIndex=2;
frame_3,com.jaspersoft.ji.adhoc.DashboardContentFrame,dashFrameScrollBars=false;

text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameLeft=736;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameTop=352;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameWidth=66;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameHeight=16;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashTextFrameLabel=Start Month;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,fontResizes=false;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashTextFrameFontSize=11;
text_2,com.jaspersoft.ji.adhoc.DashboardTextFrame,maxFontSize=11;
control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameLeft=816;
control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameTop=352;
control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameWidth=85;
control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameHeight=16;

control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameParamName=
startMonth;

control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameParamValue=
1;

control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameDefaultParam
Value=1;

control_2,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameDataType=
String;

text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameLeft=744;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameTop=376;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameWidth=59;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashFrameHeight=16;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashTextFrameLabel=End Month;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,fontResizes=false;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,dashTextFrameFontSize=11;
text_3,com.jaspersoft.ji.adhoc.DashboardTextFrame,maxFontSize=11;

control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameLeft=816;
control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameTop=376;
control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameWidth=85;
control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashFrameHeight=16;
control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameParamName=
endMonth;

control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameParamValue=
12;

control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameDefaultParam
Value=12;

control_3,com.jaspersoft.ji.adhoc.DashboardControlFrame,dashControlFrameDataType=
String;

button_1,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameLeft=832;
button_1,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameTop=400;
button_1,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameWidth=72;
button_1,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameHeight=24;

button_1,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashClickableFrameID=
submit;

button_1,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashClickableFrameType=
button;

144

Chapter 5 REST v1 - Repository Services

button_2,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameLeft=744;
button_2,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameTop=400;
button_2,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameWidth=72;
button_2,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashFrameHeight=24;
button_2,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashClickableFrameID=reset;
button_2,com.jaspersoft.ji.adhoc.DashboardClickableFrame,dashClickableFrameType=
button;

</value>
</resourceProperty>

<resourceProperty name="ADHOC_PROPERTIES">
<value>layoutSize=1024x768;
useAbsoluteSizing=true;
paperSize=content;
LayoutLeft=286;
paramValuesChanged=true;
LayoutTop=176;
localDatePattern=MM-dd-yyyy;

</value>
</resourceProperty>

</resourceDescriptor>

<resourceDescriptor name="" wsType="reference" uriString="" isNew="false">
<label>null</label>
<resourceProperty name="PROP_REFERENCE_URI">
<value>/supermart/details/TopFivesReport</value></resourceProperty>

</resourceDescriptor>
<resourceDescriptor name="" wsType="reference" uriString="" isNew="false">
<label>null</label>
<resourceProperty name="PROP_REFERENCE_URI">
<value>/supermart/salesByMonth/SalesByMonthReport</value></resourceProperty>

</resourceDescriptor>
<resourceDescriptor name="" wsType="reference" uriString="" isNew="false">
<label>null</label>
<resourceProperty name="PROP_REFERENCE_URI">
<value>/supermart/revenueAndProfit/SalesGaugesReport</value>

</resourceProperty>
</resourceDescriptor>

</resourceDescriptor>

5.4 Working with Virtual Data Sources
Data sources define a connection to a database or other source of data for running reports. Data sources are
resources in the repository that can be created, modified, and deleted with the repository service.

As with all descriptors, the descriptors for data sources contain properties and values that define the data source.
Different types of data sources have different properties, but all are self-explanatory. For example, the following
call returns the descriptor for a virtual data source in the sample data:

GET http://localhost:8080/jasperserver/rest/resource/datasources/SugarFoodmartVDS

The resource descriptor is shown below. The data sources that make up the virtual data source are given as
children descriptors of type generic datasource. Each child descriptor has an ID within the virtual data source
(PROP_DATASOURCE_SUB_DS _ID) and a repository URI (PROP_REFERENCE_URI):

<resourceDescriptor name="SugarFoodmartVDS" wsType="virtual"

145

JasperReports Server Web Services Guide

uriString="/datasources/SugarFoodmartVDS" isNew="false">
<label>SugarCRM-Foodmart Virtual Data Source</label>
<description>Virtual Data Source Combining SugarCRM and Foodmart</description>
<creationDate>1366267873303</creationDate>

<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.jasperreports.domain.

 VirtualReportDataSource</value>
</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/datasources</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>0</value>

</resourceProperty>
<resourceProperty name="PROP_SECURITY_PERMISSION_MASK">
<value>33</value>

</resourceProperty>
<resourceDescriptor wsType="datasource" isNew="false">
<resourceProperty name="PROP_REFERENCE_URI">
<value>/analysis/datasources/SugarCRMDataSourceJNDI</value>

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE">
<value>true</value>

</resourceProperty>
<resourceProperty name="PROP_DATASOURCE_SUB_DS_ID">
<value>SugarCRMDataSource</value>

</resourceProperty>
</resourceDescriptor>
<resourceDescriptor wsType="datasource" isNew="false">
<resourceProperty name="PROP_REFERENCE_URI">
<value>/analysis/datasources/FoodmartDataSourceJNDI</value>

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE">
<value>true</value>

</resourceProperty>
<resourceProperty name="PROP_DATASOURCE_SUB_DS_ID">
<value>FoodmartDataSource</value>

</resourceProperty>
</resourceDescriptor>

</resourceDescriptor>

If you wanted more information about the child data sources, use the resource service again to request their
descriptors, for example:

GET http://localhost:8080/jasperserver/rest/resource/analysis/datasources/FoodmartDataSourceJNDI

5.5 Working with Domains
The repository services can also be used to read and write Domains. Like JasperReport resources, Domains are
complex resources that contain other files. The files that make up a Domain are its Domain schema, its optional
security files, and its optional language bundles. You can find the name and location of these files by
requesting the Domain itself. For example, the following request shows the contents of the Supermart Domain:

GET http://localhost:8080/jasperserver-pro/rest/resource/Domains/supermartDomain

146

Chapter 5 REST v1 - Repository Services

All repository URIs sent and received are relative the organization of the user ID that performs the REST
operation. The URIs in this section assume the user is an organization admin such as jasperadmin.

Looking carefully through the resulting descriptor, we find the relevant information:

<resourceDescriptor name="supermartDomain" wsType="domain"
uriString="/Domains/supermartDomain" isNew="false">
<label>Supermart Domain</label>
<description>Comprehensive example of Domain (pre-joined table sets for complex reporting, custom

query based dataset, column and row security, I18n bundles)</description>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.commons.semantic.datasource.SemanticLayerDataSource

...

<resourceDescriptor name="supermartDomain_schema" wsType="xml"
uriString="/Domains/supermartDomain_files/supermartDomain_schema" isNew="false">
<label>supermartDomain_schema</label>
<description>supermartDomain_schema</description>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

...
</resourceDescriptor>

<resourceDescriptor name="supermart_domain.properties" wsType="prop"
uriString="/Domains/supermartDomain_files/supermart_domain.properties"
isNew="false">
<label>supermart_domain.properties</label>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

...
</resourceDescriptor>

<resourceDescriptor name="supermart_domain_en_US.properties" wsType="prop"
uriString="/Domains/supermartDomain_files/supermart_domain_en_US.properties"
isNew="false">
<label>supermart_domain_en_US.properties</label>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

...
</resourceDescriptor>
...

<resourceDescriptor name="supermartDomain_domain_security" wsType="xml"
uriString="/Domains/supermartDomain_files/supermartDomain_domain_security"
isNew="false">
<label>supermartDomain_domain_security</label>
<description>supermartDomain_domain_security</description>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.FileResource

...
<resourceProperty name="PROP_SECURITY_BUNDLE">
<value>true</value>

</resourceProperty>
</resourceDescriptor>

<resourceDescriptor name="dsFoodMart" wsType="reference" referenceType="jndi"
uriString="/analysis/datasources/FoodmartDataSourceJNDI" isNew="false">
<resourceProperty name="PROP_REFERENCE_URI">
<value>/analysis/datasources/FoodmartDataSourceJNDI</value>

147

JasperReports Server Web Services Guide

</resourceProperty>
</resourceDescriptor>

</resourceDescriptor>

The files contained in this Domain are:
• /Domains/supermartDomain_files/supermartDomain_schema
• /Domains/supermartDomain_files/supermartDomain_domain_security
• /Domains/supermartDomain_files/supermart_domain.properties
• /Domains/supermartDomain_files/supermart_domain_en_US.properties
• ...

To download these files, use the same syntax as for downloading file resource contents:

GET http://localhost:8080/jasperserver-pro/rest/resource/Domains/supermartDomain_files/
supermartDomain_schema?fileData=true

Domain schema files, security files, and language bundles have a special syntax described in the JasperReports
Server User Guide. To process these files automatically, you would need to write your own parser.

If you have valid schema files, security files, and language bundles, you can also create Domain resources in the
repository using the PUT method described in section 5.2.4, “Creating a Resource,” on page 138. The
following procedure outlines the step required to create a Domain resource programmatically through the REST
API:
1. Create the resource descriptor for the Domain using the descriptor shown above as an example. Make sure

the files are referenced correctly in the descriptor.
2. Create the PUT request to the resource service using the resource descriptor created in the previous step.
3. Add the files to the request as multi-part request. For example use the class

org.apache.http.entity.mime. MultipartEntity to build a multi-part request. Add each file as a
separate part to the request.

4. Send the multi-part request to JasperReports Server.
5. Process the response to verify the request was successful.

5.6 The permission Service
The permission service lets you view and set access permission on repository folders and resources. Only
administrative users and users granted the Administer permission may view and set permissions.

As it is implemented, the permission service returns and sets only explicit permissions on resources. The lack of
an explicit permission for a given role or user means that the permission is inherited from its parent folder. To
find the value of inherited permissions on a given resource, you must obtain the permissions of all of its parent
folders.

5.6.1 Viewing Permissions
The GET method retrieves the permissions defined on a resource, including both user-based and role-based
permissions.

148

Chapter 5 REST v1 - Repository Services

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/permission/path/to/resource/

Return Value on Success Typical Return Values on Failure

200 OK – The body is XML that describes all
permissions for the resource.

404 Not Found – When the specified resource URI is
not found in the repository.

The permissions for each user and each role are indicated by the following values. These values are not a true
mask; they should be treated as constants:

• No access: 0 • Read-delete: 18

• Administer: 1 • Read-write-delete: 30

• Read-only: 2 • Execute-only: 32

The response to the GET request is an entityResource that defines each permission on the resource.
Permissions for roles or users that are not specified are inherited from their parent folder:

<entityResource>
<Item xsi:type="objectPermissionImpl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<permissionMask>2</permissionMask>
<permissionRecipient xsi:type="roleImpl">
<externallyDefined>false</externallyDefined>
<roleName>ROLE_USER</roleName>

</permissionRecipient>
<URI>repo:/path/to/resource</URI>

</Item>

<Item xsi:type="objectPermissionImpl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<permissionMask>30</permissionMask>
<permissionRecipient xsi:type="roleImpl">
<externallyDefined>false</externallyDefined>
<roleName>ROLE_DEMO</roleName>

</permissionRecipient>
<URI>repo:/path/to/resource</URI>

</Item>

<Item xsi:type="objectPermissionImpl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<permissionMask>30</permissionMask>
<permissionRecipient xsi:type="userImpl">
<externallyDefined>false</externallyDefined>
<fullName>California User</fullName>
<tenantId>organization_1</tenantId>
<username>CaliforniaUser</username>

</permissionRecipient>
<URI>repo:/path/to/resource</URI>

</Item>

<Item xsi:type="objectPermissionImpl"

149

JasperReports Server Web Services Guide

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<permissionMask>30</permissionMask>
<permissionRecipient xsi:type="userImpl">
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<tenantId>organization_1</tenantId>
<username>joeuser</username>

</permissionRecipient>
<URI>repo:/path/to/resource</URI>

</Item>
</entityResource>

5.6.2 Setting Permissions
PUT is implemented as a synonym of POST for the permission service. Both will create an explicit permission
for a given role or user on a resource, overriding the previous explicit permission for the same role or user. To
set a permission use either method and include the permission descriptors (objectPermissionImpl) such as
those returned by the GET method.

Method URL

PUT or

POST

http://<host>:<port>/jasperserver[-pro]/rest/permission/path/to/resource/

Content-Type Content

text/plain A well-formed XML entityResource that defines the permissions you want to
set.

Return Value on Success Typical Return Value on Failure

200 OK 404 Not Found – When the specified resource URI is
not found in the repository.

Setting a permission creates an explicit permission for the given user or role. To reset the inherited permission
value, remove the explicit permission with the DELETE method. This method does not take a permission
descriptor, instead specify the roles and users to reset to the inherited permission as parameters.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest/permission/path/to/resource/?<argument>

Argument Type/Value Description

roles String A comma-separated list of role names. The access permission for the
specified roles will revert to the resource’s inherited permission for those
roles.

150

Chapter 5 REST v1 - Repository Services

users String A comma-separated list of user IDs. The access permission for the specified
users will revert to the resource’s inherited permission for those users.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified resource URI is
not found in the repository.

151

JasperReports Server Web Services Guide

152

CHAPTER 6 REST V1 - REPORT SERVICES
For authentication using the REST web services, see section 1.2, “REST Authentication,” on page 12.

The RESTful report services gives responses that contain the same XML data structure that are used in the
SOAP repository web service. These data structures are documented in section 1.6, “Syntax of
resourceDescriptor,” on page 18, with reference material in Appendix A, “ResourceDescriptor API
Constants,” on page 217.

This chapter includes the following sections:
• The report Service
• The jobsummary Service
• The job Service

6.1 The report Service

The rest/report service is superseded by “The v2/reports Service” on page 69 and “The
v2/reportExecutions Service” on page 72.

The report service uses a combination of the PUT, GET, and POST methods to run reports and make them
available in multiple ways through the API:
• The PUT method generates the report in any number of formats, stores the output in the session, and returns

an identifier.
• The GET method with the identifier and file ID downloads any one of the file outputs.
• The POST method can be used to regenerate the report, for example in different formats, and supports page-

by-page downloading of the PDF output.

The report service relies on the user session to store the report output in memory. While this does not follow the
stateless nature of REST implementations, it reflects the performance optimization strategies in the JasperReports
Server architecture. Filling and generating a report is resource intensive, so it is better to fill and generate once
and store multiple output files temporarily than to generate the report from scratch for every output type that is
requested.

153

JasperReports Server Web Services Guide

6.1.1 Running a Report
The PUT request for the report service runs the report and generates the specified output. The response contains
the ID of the saved output for downloading later with a GET request.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest/report/path/to/report

Argument Type/Value Description

RUN_OUTPUT_
FORMAT?

OutputType The format of the report output. The possible values are: PDF, HTML,
XLS, XLSX, RTF, CSV, XML, DOCX, ODT, ODS, JRPRINT. The Default is
PDF.

<Resource
Descriptor>

String Argument used to pass a transformer key to be used when running a
report using JRPRINT as output format. The transformer key will be used
to transform generic elements in the generated report as per
net.sf.jasperreports.engine. export.GenericElementReportTransformer.
This is a required argument when using multipart requests.

interactive? Boolean In a commercial editions of the server where HighCharts are used in the
report, this property determines whether the JavaScript necessary for
interaction is generated when exporting to HTML. By default it is true. If
set to false, the chart is generated as a non-interactive image file.

IMAGES_
URI?

String The uri prefix used for images when exporting in HTML. The default is
images.

X-Method-
Override?

POST This method can be used to perform a POST instead of a PUT.

PAGE? Integer > 0 An integer value used to export a specific page

ignore
Pagination

Boolean When true, the report output will be generated on a single page in all
export formats. When false or omitted, all export formats will be
paginated.

one-
PagePerSheet

Boolean Valid only for the XLS format. When true, each page of the report is on a
separate spreadsheet. When false or omitted, the entire report is on a
single spreadsheet. If your reports are very long, set this argument to true,
otherwise the report will not fit on a single spreadsheet and cause an
error.

Return Value on Success Typical Return Values on Failure

200 OK – The body is XML containing a summary of the
report execution (UUID, pages, generated files, etc...).
See sample return below.

404 Not Found – When the specified report URI is
not found in the repository.

154

Chapter 6 REST v1 - Report Services

The body of the PUT request should contain a resource descriptor of type reportUnit with the URI of the
report unit to run. The resource descriptor can contain one or more parameter tags to specify parameters. Lists
can be passed using parameters with the same name and the isListItem attribute set to true.

The arguments can be placed in the URL of the request or by encoding them in the multipart request. However,
some application servers such as Apache Tomcat do not process arguments that are www-url-encoded in the
request when sent to a PUT method, so be sure you are using a multipart request or you are using the GET style
parameters when using this method.

The return value of the PUT request provides the UUID of the report output in this session and the ID of the
files.

<report>
<uuid>d7bf6c9-9077-41f7-a2d4-8682e74b637e</uuid>
<originalUri>/reports/samples/AllAccounts</originalUri>
<totalPages>43</totalPages>
<startPage>1</startPage>
<endPage>43</endPage>
<file type="image/png">img_0_0_0</file>
<file type="image/gif">px</file>
<file type="text/html">report</file>
<file type="image/jpeg">img_0_42_27</file>
<file type="image/png">img_0_42_26</file>

</report>

6.1.2 Downloading Report Output
Once a report has been generated with the PUT request, it is possible to download its files using a GET request.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/report/<UUID>?<arguments> (see example
below)

Argument Type/Value Description

file? String One of the files specified in the report xml. If the file parameter is not
specified, the service returns the report descriptor.

Return Value on Success Typical Return Values on Failure

200 OK – The content is the requested file. 404 Not Found – When the specified UUID is not
found in the user’s session.

For example, the URL to download the HTML of the report generated in the previous example is:

http://<host>:<port>/jasperserver[-pro]/rest/report/d7bf6c9-9077-41f7-a2d4-8682e74b637e?file=report

As a side effect of storing the report output in the user session, the UUID in the URL is visible only to the
currently logged user. Other applications using different user IDs cannot access this report output.

155

JasperReports Server Web Services Guide

JasperReports Server does not support exporting Highcharts charts with background images to PDF,
ODT, DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have
background images to these formats, the background image is removed from the chart. The data in the
chart is not affected.

6.1.3 Regenerating Report Output
To export a report in a different format after its first execution, or to export a specific page, use the POST
method of the report service. For example, it is possible to download the report one page at a time by repeatedly
sending the appropriate POST and GET requests.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest/report/<UUID>?<arguments> (see example
below)

Argument Type/Value Description

RUN_OUTPUT_
FORMAT?

OutputType The format of the report output. Possible values: PDF, HTML, XLS, RTF,
CSV, XML, JRPRINT. The Default is PDF.

IMAGES_
URI?

String The uri prefix used for images when exporting in HTML. The default is
images.

PAGE? Integer > 0 An integer value used to export a specific page.

Return Value on Success Typical Return Values on Failure

200 OK – The new details of the report. The old files
produces are discarded and replaced with new ones.

404 Not Found – When the specified UUID is not
found in the user’s session.

For example, the following request exports page 10 of the PDF report:

POST http://host/rest/report/d7bf6c9-9077-41f7-a2d4-8682e74b637e?PAGE=10&RUN_OUTPUT_
FORMAT=PDF

You then need to take the file name from the return value and create a GET request for it.

6.2 The jobsummary Service

The rest/jobsummary service is superseded by “The v2/jobs Service” on page 90.

In order to schedule reports and interact with jobs that are created to run a report at a later time, the REST API
provides two services:
• The jobsummary service lists all currently defined jobs on a given report.
• The job service lets you create, modify, and delete a specific job.

156

Chapter 6 REST v1 - Report Services

The jobsummary service is a read only service. Requests for PUT, POST, and DELETE operations receive the
error 405, method not allowed.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/jobsummary/path/to/report/

Return Value on Success Typical Return Values on Failure

200 OK – The body contains XML that describes all
the active jobs

404 Not Found – When the specified report is not
found in the server.

The jobs are described in jobsummary elements such as the following example:

<jobs>
<jobsummary>
<id>22164</id>
<label>MyJob</label>
<nextFireTime>2011-11-11T11:11:11-08:00</nextFireTime>
<reportUnitURI>/organizations/organization_1/reports/samples/AllAccounts
</reportUnitURI>

<state>
<value>NORMAL</value>

</state>
<version>0</version>

</jobsummary>
<jobsummary>
...
</jobsummary>

</jobs>

The job summary gives the ID of the job that you need to interact with it using the job service. It also gives the
next occurrence (“fire time”) of the job, and its status that would indicate any errors.

6.3 The job Service

The rest/job service is superseded by “The v2/jobs Service” on page 90.

The job service lets you view details of a scheduled report (called a job), edit them, create new jobs, and delete
existing ones. For interacting with existing jobs, use the jobID that you obtained from the jobsummary service.

6.3.1 Viewing a Job Definition
The GET method for the job service retrieves the information about a scheduled job.

157

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/job/<jobID>/

Return Value on Success Typical Return Values on Failure

200 OK – The body contains XML that describes all
the job properties

404 Not Found – When the specified job is not found
in the server.

The GET method returns a job element that gives the output, scheduling, and parameter details, if any, for the
job:

<job>
<baseOutputFilename>AllAccounts</baseOutputFilename>
<description>Sample job</description>
<id>22164</id>
<label>MyJob</label>

<mailNotification>
<id>22163</id>
<messageText></messageText>
<resultSendType><value>SEND</value></resultSendType>
<skipEmptyReports>false</skipEmptyReports>
<subject>Scheduled AllAccounts report</subject>
<toAddresses>example@example.com</toAddresses>
<version>2</version>

</mailNotification>

<outputFormats>PDF</outputFormats>
<outputFormats>HTML</outputFormats>
<outputLocale></outputLocale>
<reportUnitURI>/reports/samples/AllAccounts</reportUnitURI>

<repositoryDestination>
<folderURI>/reports/samples</folderURI>
<id>22162</id>
<outputDescription></outputDescription>
<overwriteFiles>false</overwriteFiles>
<sequentialFilenames>false</sequentialFilenames>
<version>0</version>

</repositoryDestination>

<simpleTrigger>
<id>22161</id>
<startDate>2011-11-11T11:11:11-08:00</startDate>
<timezone>America/Los_Angeles</timezone>
<version>0</version>
<occurrenceCount>1</occurrenceCount>

</simpleTrigger>
<version>0</version>

</job>

6.3.2 Scheduling a Report
To schedule a report, create its job descriptor and use the PUT method of the job service. Specify the report
being scheduled inside the job descriptor. You do not need to specify any job IDs in the descriptor, because the

158

Chapter 6 REST v1 - Report Services

server will assign them.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest/job/

Content-Type Content

text/plain A well-formed XML job descriptor.

Return Value on Success Typical Return Values on Failure

201 Created – The body contains XML Job descriptor.
This is the only case where a descriptor returns for a
put request and that id due to the fact that the job id
(the job handle) is created in the server.

404 Not Found – When the report specified in the job
descriptor is not found in the server.

The output formats are those supported by JasperReports server, as given by the following values:

• PDF • XLS • DOCX

• HTML • XLS_NOPAG • RTF

• CSV • XLSX • ODT

• ODS • XLSX_NOPAG •

The recurrence can be defined as follows:
• No recurrence (single run), for example:

<simpleTrigger>
<startDate>2011-11-11T11:11:11-08:00</startDate>
<timezone>America/Los_Angeles</timezone>
<version>0</version>
<occurrenceCount>1</occurrenceCount>

</simpleTrigger>

• Simple recurrence, for example every day until a given date:

<simpleTrigger>
<endDate>2011-11-11T11:11:11-08:00</endDate>
<startDate>2012-12-12T12:12:12-08:00</startDate>
<timezone>America/Los_Angeles</timezone>
<version>0</version>
<occurrenceCount>-1</occurrenceCount>
<recurrenceInterval>1</recurrenceInterval>
<recurrenceIntervalUnit>
<value>DAY</value>

</recurrenceIntervalUnit>
</simpleTrigger>

• Calendar recurrence, for example every Tuesday and Thursday in February, April, and June until next year:

159

JasperReports Server Web Services Guide

< <calendarTrigger>
<endDate>2012-12-12T12:12:12-08:00</endDate>
<timezone>America/Los_Angeles</timezone>
<version>0</version>
<daysType><value>WEEK</value></daysType>
<hours>0</hours>
<minutes>0</minutes>
<monthDays></monthDays>
<months>2</months>
<months>4</months>
<months>6</months>
<weekDays>3</weekDays>
<weekDays>5</weekDays>

</calendarTrigger>

6.3.3 Editing a Job Definition
To modify an existing job definition, use the GET method to read its job descriptor, modify the descriptor as
required, and use the POST method of the job service. The POST method replaces the definition of the job with
the given job ID.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest/job/<jobID>/

Content-Type Content

text/plain A well-formed XML job descriptor.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified job is not found
in the server.

6.3.4 Deleting a Job Definition
Use the DELETE method to delete a job identified by its jobID. Use the jobsummary service to see the job IDs
for a given report.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest/job/<jobID>/

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified job is not found
in the server.

160

CHAPTER 7 REST V1 - ADMINISTRATION SERVICES
Only administrative users may access the REST services for administration. For authentication using the REST
web services, see section 1.2, “REST Authentication,” on page 12.

The RESTful administration services gives responses that contain the same XML data structure that are used in
the SOAP administration web service. These data structures are documented in section 1.6, “Syntax of
resourceDescriptor,” on page 18, with reference material in Appendix A, “ResourceDescriptor API
Constants,” on page 217.

This chapter includes the following sections:
• The organization Service
• The user Service
• The attribute Service
• The role Service

7.1 The organization Service

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

In commercial editions of JasperReports Server, the organization service lets you view, create, modify, and
delete organizations (also known as tenants).

The rest/organization service is replaced by the rest_v2/organizations service. Jaspersoft recommends
using the latest rest_v2 services.

7.1.1 Viewing an Organization
The GET method retrieves information about an organization and optionally its child organizations. To specify
an organization, use its ID, not its path.

161

JasperReports Server Web Services Guide

Method URL

GET http://<host>:<port>/jasperserver-pro/rest/organization/organizationID?<arguments>

Argument Type/Value Description

listSubOrgs? Boolean When this argument is omitted or is false, only the specified organization is
returned. When true only the suborganizations are returned.

Return Value on Success Typical Return Values on Failure

200 OK – The content is a descriptor for the
organization or its suborganizations.

404 Not Found – When the specified organization ID
is not found in the server.

When the listSubOrgs argument is omitted or false, the GET method returns a single tenant descriptor for the
given organization:

<tenant>
<alias>organization_1</alias>
<id>organization_1</id>
<parentId>organizations</parentId>
<tenantDesc> </tenantDesc>
<tenantFolderUri>/organizations/organization_1</tenantFolderUri>
<tenantName>Organization</tenantName>
<tenantNote> </tenantNote>
<tenantUri>/organization_1</tenantUri>
<theme>default</theme>

</tenant>

The tenantFolderURI is always relative to the user ID that authenticated the request. In these two
examples, the user ID is superuser.

When the listSubOrgs argument is true, the GET method returns a list of tenant descriptors. If the given
organization has no suborganizations, the list is empty.

<tenantsList>
<tenant>
<alias>SubOrganization</alias>
<id>SubOrganization</id>
<parentId>organization_1</parentId>
<tenantDesc>My SubOrganization</tenantDesc>
<tenantFolderUri>/organizations/organization_1/organizations/SubOrganization
</tenantFolderUri>

<tenantName>SubOrganization</tenantName>
<tenantUri>/organization_1/SubOrganization</tenantUri>
<theme>default</theme>

</tenant>
</tenantsList>

7.1.2 Creating an Organization
Use the PUT method of the organization service to create a new organization.

162

Chapter 7 REST v1 - Administration Services

Method URL

PUT http://<host>:<port>/jasperserver-pro/rest/organization/

Content-Type Content

text/plain A well-formed tenant descriptor that accurately describes the desired
organization.

Return Value on Success Typical Return Values on Failure

201 Created 404 Not Found – When the parent organization ID in
the descriptor is not found in the server.

7.1.3 Modifying Organization Properties
Use the POST method of the organization service to update the properties of an existing organization.

Method URL

POST http://<host>:<port>/jasperserver-pro/rest/organization/organizationID/

Content-Type Content

text/plain A well-formed tenant descriptor with updated property values for the
desired organization.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the organization ID is not
found in the server.

As with organizations managed in the user interface, only certain fields may be modified in the tenant
descriptor:
• alias – Can be used for logging in, but must be unique among all organization aliases.
• tenantDesc – Description of the organization, visible only to administrators.
• tenantName – Display name of the organization, appearing to users on the organization’s root folder.
• theme – The user interface theme that is active for all organization users.

7.1.4 Deleting an Organization
Use the DELETE method of the organization service to remove an existing organization.

Method URL

DELETE http://<host>:<port>/jasperserver-pro/rest/organization/organizationID/

163

JasperReports Server Web Services Guide

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the organization ID is not
found in the server.

Deleting an organization removes all of its users, roles, and all of its suborganizations recursively.

7.2 The user Service
The GET method for the user service returns descriptors for all users that match the search string. In commercial
editions, the scope of the search is the administrator’s organization and all suborganizations. In the community
project, there are no organizations, and the scope is all users defined in the server. If no search string is
specified, all users are returned. If no users match the search string, the method returns an empty list.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/user/<searchString>

Return Value on Success Typical Return Values on Failure

200 OK – The content is a descriptor for each of the
users that match the search.

The following example shows the descriptors for users that match the search string “joe”:

<users>
<user>
<enabled>true</enabled>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<previousPasswordChangeTime>2011-11-29T10:18:38.062-08:00
</previousPasswordChangeTime>

<roles>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_USER</roleName>

</roles>
<tenantId>organization_1</tenantId>
<username>joeuser</username>

</user>
<user>
<emailAddress></emailAddress>
<enabled>true</enabled>
<externallyDefined>false</externallyDefined>
<fullName>joeuser</fullName>
<previousPasswordChangeTime>2011-11-29T15:52:18.407-08:00
</previousPasswordChangeTime>

<roles>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_USER</roleName>

</roles>
<tenantId>SubOrganization</tenantId>
<username>joeuser</username>

</user>
</users>

164

Chapter 7 REST v1 - Administration Services

The descriptor above is from a commercial edition, and each user has a tenantId element to indicate which
organization the user belongs to. The community project does not have organizations and thus does not specify
the tenantId element.

The externallyDefined property is true when the user is authenticated by a 3rd party such as an LDAP
directory or single sign-on mechanism. For more information, see the JasperReports Server
Authentication Cookbook.

7.2.1 Creating a User
Use the PUT method of the user service to create a new user. In commercial editions, specify the user’s
organization in the tenantId element of the user descriptor.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest/user/

Content-Type Content

text/plain A well-formed user descriptor that describes the properties of the desired
user. You can set the following properties on the user account:
• username – Required.
• password – Required.
• fullName – Required.
• tenantId – Required on commercial editions with multiple organizations.
• enabled – Optional.
• emailAddress – Optional.
• roles – Optional list of roles. The ROLE_USER is assigned automatically.

All other properties seen in user descriptors are generated by the server and
should not be set.

Return Value on Success Typical Return Values on Failure

201 Created 404 Not Found – When the organization ID in the
descriptor is not found in the server.

The following example shows a user descriptor for creating a user:

<user>
<username>Alice</username>
<password>myPassword</password>
<fullName>Alice Adams</fullName>
<tenantId>organization_1</tenantId>
<emailAddress>alice@example.com</emailAddress>
<roles>
<roleName>ROLE_DEMO</roleName>

</roles>
</user>

165

JasperReports Server Web Services Guide

7.2.2 Editing a User
Use the POST method of the user service to update the properties of an existing user.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest/user/<userID>/

Content-Type Content

text/plain A well-formed user descriptor that describes the properties of the desired
user.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the user ID is not found in the
server.

7.2.3 Deleting a User
Use the DELETE method of the user service to remove an existing user.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest/user/<userID>/

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified user ID is not
found in the server.

7.3 The attribute Service
The attribute service lets you view and update profile attributes, which are custom properties associated with a
user. This service does not delete attributes in this release.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/attribute/<userID>/

Return Value on Success Typical Return Values on Failure

200 OK – The content is a descriptor for the user
attributes.

404 Not Found – When the specified user ID is not
found in the server.

The following example show the user attributes specified in an entityResource element:

166

Chapter 7 REST v1 - Administration Services

<entityResource>
<Item xsi:type="profileAttributeImpl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<attrName>State</attrName>
<attrValue>CA</attrValue>

</Item>
<Item xsi:type="profileAttributeImpl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<attrName>Cities</attrName>
<attrValue>San Francisco, Oakland, San Jose</attrValue>

</Item>
</entityResource>

Use the PUT or POST methods of the attribute service to add attributes to a user. For this service, these methods
are synonyms.

Method URL

PUT or

POST

http://<host>:<port>/jasperserver[-pro]/rest/attribute/<userID>/

Content-Type Content

text/plain A well-formed descriptor that contains the attributes to add to the given user.

Return Value on Success Typical Return Values on Failure

201 Created 404 Not Found – When the user ID is not found in the
server.

The DELETE on the attribute service is not implemented in this release.

7.4 The role Service
The role service allows administrators to view, create, edit, and delete role definitions. However, the role service
does not define role membership. To add users to a role, edit the user’s properties, as described in 7.2.2,
“Editing a User,” on page 166.

The GET method of the role service returns descriptors for all roles that match the search string. In commercial
editions, the scope of the search is the administrator’s organization and all suborganizations. In the community
project, there are no organizations, and the scope is all roles defined in the server. If no search string is specified,
all roles are returned. If no roles match the search string, the method returns an empty list.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest/role/<searchString>/

Return Value on Success Typical Return Values on Failure

200 OK – The content is a descriptor for each of the
roles that match the search.

167

JasperReports Server Web Services Guide

In commercial editions, roles defined in an organization specify its ID in the tenantID element. System roles
that appear in every organization are listed without a tenantID property. The community project does not have
organizations and thus does not specify the tenantId element on any roles.

<roles>
<role>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_ADMINISTRATOR</roleName>

</role>
<role>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_ANONYMOUS</roleName>

</role>
<role>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_DEMO</roleName>

</role>
<role>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_SUPERMART_MANAGER</roleName>

</role>
<role>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_USER</roleName>

</role>
<role>
<externallyDefined>false</externallyDefined>
<roleName>ROLE_SAMPLE</roleName>
<tenantId>organization_1</tenantId>

</role>
</roles>

7.4.1 Creating a New Role
Use the PUT method of the role service to create a new role. In commercial editions, specify the role’s
organization in the tenantID element of the role descriptor.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest/role/

Content-Type Content

text/plain A well-formed role descriptor that describes the properties of the desired
role.

Return Value on Success Typical Return Values on Failure

201 Created 404 Not Found – When the organization ID in the
descriptor is not found in the server.

7.4.2 Editing a Role
Use the POST method of the role service to update the properties of an existing role.

168

Chapter 7 REST v1 - Administration Services

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest/role/<roleName>/

Content-Type Content

text/plain A well-formed role descriptor that describes the properties of the desired
role.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the roleName is not found in
the server.

7.4.3 Deleting a Role
Use the DELETE method of the role service to remove an existing role.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest/role/<roleName>/

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found – When the specified role is not found
in the server.

169

JasperReports Server Web Services Guide

170

CHAPTER 8 SOAP - REPOSITORY WEB SERVICE

With the completion of the REST v2 API in JasperReports Server 5.5, Jaspersoft announces the end of life
of the SOAP web services. The SOAP web services will no longer be maintained or updated to support
new features of the server. In particular, the SOAP web services do not support interactive charts or
interactive HTML5 tables.

The repository web service is comprised of seven methods: list, get, put, move, copy, delete, and
runReport.

You can retrieve the WSDL (Web Services Description Language) document that describes the repository
service by invoking the URL of the service and appending the string ?wsdl. For example:

http://localhost:8080/jasperserver-pro/services/repository?wsdl

This chapter contains the following sections:
• Request and Operation Result
• List Operation
• Get Operation
• Put Operation
• Delete Operation
• Move Operation
• Copy Operation
• runReport Operation
• Errors
• Implementation Suggestions

8.1 Request and Operation Result
The repository web services operation takes a single input parameter of type String. This XML document
represents the request. The following shows its DTD:

<!ELEMENT request (argument*, resourceDescriptor?)>
<!ATTLIST request
operationName (get | list | put | runReport) "list"
locale #IMPLIED

>

171

JasperReports Server Web Services Guide

<!ELEMENT argument (#PCDATA)>
<!ATTLIST argument
name CDATA #REQUIRED

>

A request is a very simple document that contains:
• The operation to execute (list, get, put, delete, or runReport).
• A set of optional arguments. Each argument is a pair of a key and a value that is used to achieve very

particular results; arguments are only used rarely.
• A resource descriptor.

The operation name is redundant, since the operation to execute is intrinsic in the invoked service. However,
including the name can clarify the request document.

The services act on a single resource at time. The resource that is the subject of the request is described by a
resourceDescriptor.

To get error messages in a particular locale supported by the server, specify the locale code with the locale
attribute. Locale codes are in the form <language code>[_<country>[_<variant>]. Valid examples include
en_US, it_IT, fr_FR, de_DE, ja_JP, and es_ES. For a list of Java-compliant locales, refer to Sun’s Java web
site.

The following sample request lists the repository root:

<?xml version="1.0" encoding="UTF-8"?>
<request operationName="list" locale="en">
<resourceDescriptor name="" wsType="folder" uriString="/">
<label>null</label>

</resourceDescriptor>
</request>

Executing a service produces the operationResult in the form of a new XML document.

The DTD is very simple:

<!ELEMENT operationResult (code, message?, resourceDescriptor*)>
<!ATTLIST operationResult
version NMTOKEN #REQUIRED

>
<!ELEMENT code (#PCDATA)>
<!ELEMENT message (#PCDATA)>

The operation result contains a return code, an optional return message, and zero or more resource descriptors. A
return code other than 0 indicates an error, which is normally described in the message tag.

The operation result always includes the version attribute: it can be used to detect the server version. For
example, you can list the repository root and read the version set by the server in the response. In this case, we
aren’t interested in the root folder’s content. We just want the version information from the response object
itself.

The operation result of such a request is:

<operationResult version="1.2.1">
<returnCode>0</returnCode>
...

172

Chapter 8 SOAP - Repository Web Service

several resource descriptors...
...

</operationResult>

8.2 List Operation
This service lists the contents of the specified folder or report unit. The following sample request lists the
contents of the
/ContentFiles folder in the repository:

<request operationName="list" locale="en">
<resourceDescriptor name="" wsType="folder" uriString="/ContentFiles" isNew=
"false">
<label>null</label>

</resourceDescriptor>
</request>

Sample response:

<operationResult version="1.2.0">
<returnCode>0</returnCode>
<resourceDescriptor name="html" wsType="folder" uriString="/ContentFiles/html"
isNew="false">
<label>html</label>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Folder</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/ContentFiles</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>0</value>

</resourceProperty>
</resourceDescriptor>
<resourceDescriptor name="pdf" wsType="folder" uriString="/ContentFiles/pdf"
isNew="false">

<label>pdf</label>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Folder</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/ContentFiles</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>0</value>

</resourceProperty>
</resourceDescriptor>
<resourceDescriptor name="xls" wsType="folder" uriString="/ContentFiles/xls"
isNew="false">
<label>xls</label>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Folder</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">

173

JasperReports Server Web Services Guide

<value>/ContentFiles</value>
</resourceProperty>

<resourceProperty name="PROP_VERSION">
<value>0</value>

</resourceProperty>
</resourceDescriptor>

</operationResult>

When it lists a folder, the repository web service returns a set of resource descriptors: one for each resource that
resides in the specified folder. Use / as the URI of the root folder.

Similarly, when it lists a report unit, the repository web service returns a set of resource descriptors that contain
(at a minimum) the main JRXML source file. Since a resource in a report unit can be either a local resource or a
reference to another repository resource, you should keep a few details in mind:
• If a report unit data source is not defined locally, its wsType is set to datasource, which does not indicate

the exact nature of the resource. Its type should simply be reference, but since the data source used by the
report unit is a special child resource, it’s easy to recognize. The URI of the referenced resource is available
in the PROP_REFERENCE_URI property.

• The main JRXML resource’s wsType is always set to jrxml, even if it’s a reference to an external JRXML
resource. By looking at the PROP_IS_REFERENCE and PROP_REFERENCE_URI properties, you can determine
where the resource is actually stored. The PROP_RU_IS_MAIN_REPORT property identifies the main JRXML
source file of the report unit, even if the order of its children is altered.

• The purpose of listing a report unit is to get the list of the resources contained in the report unit. To retrieve
the entire report unit (report unit resource as well as its children) at the same time, use the get service.

The following Java sample illustrates wsclient as an instance of
com.jaspersoft.jasperserver.irplugin.wsclient.WSClient:

ResourceDescriptor rd = new ResourceDescriptor();
rd.setWsType(ResourceDescriptor.TYPE_FOLDER);
rd.setUriString("/");
List lst = wsclient.list(rd);

PHP sample:

$result = ws_list("/");
if (get_class($result) == 'SOAP_Fault')
{
$errorMessage = $result->getFault()->faultstring;

}
else
{
$folders = getResourceDescriptors($result);

}

This PHP sample uses the client.php file found in the PHP sample provided with JasperReports Server. This file
defines the most important constants you may find useful when integrating with the JasperReports Server web
services, as well as useful functions that wrap the list, get, and the runReport operations.

The list operation also provides a shortcut to get the list of all resources of a given type in the repository, for
example all the reports. This use of the list operation has the following syntax:

174

Chapter 8 SOAP - Repository Web Service

<request operationName="list">
<argument name="LIST_RESOURCES"/>
<argument name="RESOURCE_TYPE">reportUnit</argument>
<argument name="PARENT_DIRECTORY">/reports</argument>

</request>

or
<request operationName="list">
<argument name="LIST_RESOURCES"/>
<argument name="RESOURCE_TYPE">reportUnit</argument>
<argument name="START_FROM_DIRECTORY">/reports</argument>

</request>

No value is needed for the LIST_RESOURCES argument. The value of the RESOURCE_TYPE argument can be any
value of wsType except folder. The PARENT_DIRECTORY argument is the name of folder in which you want to
look for resources. If you want to look for the resources in a branch of the repository, use the START_FROM_
DIRECTORY argument.

Using LIST_RESOURCES is the only case in which a request doesn’t require a resource descriptor.

Several Java methods in com.jaspersoft.jasperserver.irplugin.wsclient.WSClient use LIST_
RESOURCES:
• list(String xmlRequest) - Sends any custom request, including one using LIST_RESOURCES as shown

above.
• listResources(String type) - Lists all resources of the given type in the repository visible to the

logged in user.
• listResourcesInFolder(String type, String parentFolder) - Lists resources of the given type in

the folder.
• listResourcesUnderFolder(String type, String ancestorFolder) - Lists resources of the given

type in the folder and the entire tree beneath that folder.

8.3 Get Operation
The get operation is used to obtain information about a resource. In the case of file resources, such as images,
fonts, JRXML files, and JAR files, the resource file is attached to the response message.

This method’s behavior differs according to the type of object specified:
• Generally, a simple resource descriptor is returned.
• If you get a resource file, the file content is attached to the response; if you do not want the server to attach

files to the response, set the request’s NO_ATTACHMENT argument to true.
• If you get a report unit, all the related resources are added as child resource descriptors to the report unit

descriptor.
• To get an input control that is based on a query, you must set the IC_GET_QUERY_DATA argument to

the valid URI of a datasource for the control, or you can handle the NONE condition as in the sample code
java-webapp-sample.

If you set the datasource in the input control, that datasource is used to execute the query and populate the
resource descriptor. This can be useful when the input control must be rendered (for example, on a web
page) in order to capture a value to pass when executing a report.

175

JasperReports Server Web Services Guide

• You can use parameters in the input control to select query values, including the datasource. See the
examples starting on page 183.

The following sample request gets a file resource:

<request operationName="get" locale="en">
<resourceDescriptor name="JRLogo" wsType="img" uriString="/images/JRLogo" isNew="false">
<label>JR logo</label>
<description>JR logo</description>

</resourceDescriptor>
</request>

The service only uses the uriString to identify the resource to get and check for access permissions. This
means that other information present in the resource description (such as resource properties, label, and
description) are not actually used or required.

If a file is attached to the response, the returned resource descriptor has the PROP_HAS_DATA property set to
true. By default, the attachments format is MIME. You can use DIME attachments by specifying the USE_
DIME_ATTACHMENTS argument in the request.

A get call always returns a resource descriptor. If the specified resource is not found, or the specified user
cannot access it, an error with code 2 is returned.

Java sample:

String imgUri = "/images/JRLogo";
ResourceDescriptor rdis = new ResourceDescriptor();
rdis.setParentFolder("/images");
rdis.setUriString(imgUri);
ResourceDescriptor result = wsclient.get(rdis, null);

PHP sample:

$result = ws_get($someInputControlUri, array(IC_GET_QUERY_DATA =>
$someDatasourceUri));

The resource descriptor of an input control that includes data obtained by setting the IC_GET_QUERY_DATA
argument to true would be similar to the following XML:

<resourceDescriptor name="TEST_LIST" wsType="inputControl" uriString= "/MyInputControls/TEST_LIST"
isNew="false">
<label>My test list</label>
<description>My test list</description>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.InputControl</
value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/MyInputControls</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>6</value>

</resourceProperty>
<resourceProperty name="PROP_HAS_DATA">
<value>false</value>

176

Chapter 8 SOAP - Repository Web Service

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE">
<value>false</value>

</resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_IS_MANDATORY">
<value>true</value>

</resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_IS_READONLY">
<value>false</value>

</resourceProperty>
<resourceProperty name="PROP_INPUTCONTROL_TYPE">
<value>7</value>

</resourceProperty>

<resourceProperty name="PROP_QUERY_VALUE_COLUMN">
<value>name</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_VISIBLE_COLUMNS">
<resourceProperty name="PROP_QUERY_VISIBLE_COLUMN_NAME">
<value>name</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_VISIBLE_COLUMN_NAME">
<value>phone_office</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_VISIBLE_COLUMN_NAME">
<value>billing_address_city</value>

</resourceProperty>
</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA">
<resourceProperty name="PROP_QUERY_DATA_ROW">
<value>A & L Powers Engineering, Inc</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>A & L Powers Engineering, Inc</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>738-555-3283</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Haney</value>

</resourceProperty>
</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW">
<value>A & U Jaramillo Telecommunications, Inc</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>A & U Jaramillo Telecommunications, Inc</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>564-555-6913</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Walla Walla</value>

</resourceProperty>
</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW">
<value>A & U Stalker Telecommunications, Inc</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>A & U Stalker Telecommunications, Inc</value>

177

JasperReports Server Web Services Guide

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>323-555-1226</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Mill Valley</value>

</resourceProperty>
</resourceProperty>

<resourceProperty name="PROP_QUERY_DATA_ROW">
<value>A & X Caravello Engineering, Inc</value>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>A & X Caravello Engineering, Inc</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>958-555-5890</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_DATA_ROW_COLUMN">
<value>Tlaxiaco</value>

</resourceProperty>
</resourceProperty>

</resourceProperty>
<resourceDescriptor name="query" wsType="query" uriString="/MyInputControls/
TEST_LIST_files/query" isNew="false">
<label>query</label>

<description>query</description>
<resourceProperty name="PROP_RESOURCE_TYPE">
<value>com.jaspersoft.jasperserver.api.metadata.common.domain.Query</value>

</resourceProperty>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/MyInputControls/TEST_LIST_files</value>

</resourceProperty>
<resourceProperty name="PROP_VERSION">
<value>1</value>

</resourceProperty>
<resourceProperty name="PROP_HAS_DATA">
<value>false</value>

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE">
<value>false</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY">
<value>SELECT name, phone_office, billing_address_city FROM accounts order by
name</value>

</resourceProperty>
<resourceProperty name="PROP_QUERY_LANGUAGE">
<value>sql</value>

</resourceProperty>
<resourceDescriptor name="" wsType="datasource" uriString="" isNew="false">
<label>null</label>
<resourceProperty name="PROP_REFERENCE_URI">
<value>/datasources/JServerJdbcDS</value>

</resourceProperty>
<resourceProperty name="PROP_IS_REFERENCE">
<value>true</value>

</resourceProperty>
</resourceDescriptor>

</resourceDescriptor>
</resourceDescriptor>

178

Chapter 8 SOAP - Repository Web Service

The query result is a set of rows that represents the full set of possible values for the input control. For each row,
the repository web service returns the value that runReport expects for that particular option in the input
control. Each row also includes the column values that should be displayed in the input control when
prompting users.

Figure 8-1 Query Results

This figure shows input controls based on queries, as they are rendered by the iReport Designer plugin for
JasperReports Server. When the web services run report units, the rendering of input controls is left to the client
application. The best way to proceed is:
• Get the report unit.
• Check for query-based input controls by looking at the PROP_INPUTCONTROL_TYPE resource property or

each child resource descriptor where wsType is equal to inputControl.
• Get each query-based input control by setting the IC_GET_QUERY_DATA argument to true.
• Render the input controls (if used in the report unit), being mindful of the input control properties (such as

read only and mandatory).
• Call the runReport service and pass the user-selected values.

The rows are stored in the PROP_QUERY_DATA resource property: for each row, a child resource property named
PROP_QUERY_DATA_ROW contains the value and a set of children that contain the column values; these last
resource properties are named PROP_QUERY_DATA_ROW_COLUMN.

The following schema may elucidate the whole data structure:

PROP_QUERY_DATA
(
PROP_QUERY_DATA_ROW, value
(
PROP_QUERY_DATA_ROW_COLUMN, value
PROP_QUERY_DATA_ROW_COLUMN, value
...
)

PROP_QUERY_DATA_ROW, value

179

JasperReports Server Web Services Guide

(
PROP_QUERY_DATA_ROW_COLUMN, value
PROP_QUERY_DATA_ROW_COLUMN, value
...
)

PROP_QUERY_DATA_ROW, value
(
PROP_QUERY_DATA_ROW_COLUMN, value
PROP_QUERY_DATA_ROW_COLUMN, value
...
)

)

In Java, to simplify response processing, the resourceDescriptor class provides the getQueryData() method
that returns a list of InputControlQueryDataRow, which is a convenient class containing all the row
information (row and column values).

8.4 Put Operation
The put operation adds new resources to the repository or modifies existing ones. Whether the service adds or
modifies a resource depends on whether the request’s isNew resource descriptor attribute is set to true. The
parent URI of the new resource must exist, and can be the repository root (/). When modifying a resource, you
must provide the whole resource descriptor; the changes do not impact child resources.

You cannot use the put web service to create report options.

In the web interface, report options are created when users specify values for a report’s input controls or
filters, and then choose to save those settings. A new instance of the report appears as a child of the
report itself. Users click the report instance to run the report using the saved values.

The following XML code creates a folder called test inside the /reports/samples folder:

<request operationName="put" locale="en">
<resourceDescriptor name="test" wsType="folder" uriString="/reports/samples/test"
isNew="true">

<label>Test</label>
<description>This is a test</description>
<resourceProperty name="PROP_PARENT_FOLDER">
<value>/reports/samples</value>

</resourceProperty>

</resourceDescriptor>
</request>

When adding a file resource, the data must be added as an attachment to the SOAP request, and the PROP_HAS_
DATA property must be set to true. When modifying a file resource, you only need to attach the file if it must
be replaced; otherwise PROP_HAS_DATA can be set to FALSE. In this case, the properties you provide are
changed (for example, the label and the description).

The following Java sample creates a new image resource in the repository using the sample classes provided
with JasperReports Server:

180

Chapter 8 SOAP - Repository Web Service

ResourceDescriptor rdis = new ResourceDescriptor();
rdis.setResourceType(ResourceDescriptor.TYPE_IMAGE);
rdis.setName("testImageName");
rdis.setLabel("TestImageLabel");
rdis.setDescription("Test Image Description");
rdis.setParentFolder("/images");

rdis.setUriString(rdis.getParentFolder() + "/" + rdis.getName());
rdis.setWsType(ResourceDescriptor.TYPE_IMAGE);
File img = new File("/some/file/logo.jpg"));
rdis.setHasData(true);
rdis.setIsNew(true);
ResourceDescriptor result = wsclient.addOrModifyResource(rdis, img);

Working with report units is a bit more complicated. When creating a new report unit, the request must contain
a child JRXML resource descriptor where the PROP_RU_IS_MAIN_REPORT property is set to true. This resource
becomes the main JRXML of the report unit. If it is defined locally to the report, the file must be attached to the
SOAP request (in this case, the parent URI for report unit’s children is not relevant, and can be set to something
like <report unit parent uri>/<report unit name>_files).

If the report unit’s main JRXML already resides in the repository, the descriptor is still defined as a JRXML
resource (that is, the wsType property must be set to jrxml), and the PROP_FILERESOURCE_REFERENCE_URI
property must be set to the URI of the correct JRXML resource in the repository.

A second child resource is recognized during creation: a data source descriptor of the data source that the server
will use to run the report. This resource is optional, and can be defined either locally to the report unit or as a
reference to another resource in the repository:
• When the data source is defined locally, the resource’s wsType must be a valid data source type, such as

jdbc, jndi, or bean.
• If the data source is defined elsewhere in the repository, its wsType must be set to datasource, which

indicates an undefined resource that can be used as a data source, and its PROP_FILERESOURCE_IS_
REFERENCE property must be set to true. The resource’s actual URI must be set using the PROP_
FILERESOURCE_REFERENCE_URI property.

Other resources such as input controls and subreports, must be added separately using the put operation to
modify the report unit.

Creating, modifying, and removing resources in a report unit is similar to working with resources in a folder.
The main difference is that you must set the request’s MODIFY_REPORTUNIT_URI argument to the URI of the
report unit you want to modify. You cannot remove the JRXML resource flagged as main JRXML, but can
replace or modify it. The repository web service doesn’t allow you to add more than a single data source to the
report unit; the report unit is always run against this data source.

When creating reports with parameters, note that the corresponding input controls must be added using a
subsequent web service request; you cannot create the input controls in the same web service request
that created the report.

8.5 Delete Operation
This operation deletes resources from the repository. If the specified resource is located in a report unit, you
must set the request’s MODIFY_REPORTUNIT_URI argument to the URI of the report unit you want to modify.

181

JasperReports Server Web Services Guide

If you are deleting a folder, all its content is removed recursively. There is no way to recover a deleted resource
or folder, so use caution when calling this service.

The following sample request deletes a resource from a report unit:

<request operationName="delete" locale="en">
<argument name="MODIFY_REPORTUNIT_URI">/reports/JD_New_report</argument>
<resourceDescriptor name="test_img" wsType="img" uriString="/reports/JD_New_report_files/test_img">
<label>test image</label>
<description>test image</description>
</resourceDescriptor>
</request>

8.6 Move Operation
This operation moves a repository folder or resource to a different folder in the repository. The operation
exposes the API repository service moveResource and moveFolder methods.

The operation expects (as part of the request) a resource descriptor that identifies the resource or folder to be
moved. The new location of the resource or folder must be provided as the value of the DESTINATION_URI
request argument. The destination URI must resolve to an existing repository folder.

The following request moves the report unit located at /Reports/NewReport to /MyReports:

<request operationName="move" locale="en"
<argument name="DESTINATION_URI">/MyReports</argument>
<resourceDescriptor name="NewReport" wsType="reportUnit" uriString="/Reports/NewReport">
</resourceDescriptor>
</request>

8.7 Copy Operation
This operation creates a copy of an existing resource or folder. The operation exposes the repository service
copyResource and copyFolder API methods.

The resource or folder to be copied is sent as the resource descriptor of the request; the caller does not need to
provide the full resource information; just the information required to locate the resource is required.

The full location of the copy must be provided as the value of the DESTINATION_URI request argument. If this
location already exists in the repository at the moment the operation is called, the server automatically changes
the name part of the destination URI and saves the resource or folder copy at the new URI.

The copy operation response includes a descriptor for the saved resource or folder copy. The response descriptor
is particularly useful in determining whether the copy has been created at the specified destination URI or at a
different/generated URI.

When a folder is being copied, all its subfolders and contained resources are copied recursively.

The following request copies the report unit located at /Reports/NewReport to /MyReports/NewReportCopy:

<request operationName="copy" locale="en"
<argument name="DESTINATION_URI">/MyReports/NewReportCopy</argument>
<resourceDescriptor name="NewReport" wsType="reportUnit" uriString="/Reports/NewReport">
</resourceDescriptor>
</request>

182

Chapter 8 SOAP - Repository Web Service

8.8 runReport Operation
This operation executes a report on the server then returns the report’s results in the specified format. The client
application is responsible for prompting users for values to pass to any input controls referenced by the report,
as shown in the following sample request XML:

<request operationName="runReport" locale="en">
<argument name="RUN_OUTPUT_FORMAT">JRPRINT</argument>
<resourceDescriptor name="" wsType=""
uriString="/reports/samples/EmployeeAccounts"
isNew="false">
<label>null</label>
<parameter name="EmployeeID">emil_id</parameter>
<parameter name="TEST_LIST" isListItem="true">A & L Powers Engineering, Inc</parameter>
<parameter name="TEST_LIST" isListItem="true">A & U Jaramillo Telecom, Inc</parameter>
<parameter name="TEST_LIST" isListItem="true">A & U Stalker Telecom, Inc</parameter>
</resourceDescriptor>
</request>

This example shows a parameter tag:

<!ELEMENT parameter (#PCDATA)>
<!ATTLIST parameter
name CDATA #REQUIRED
isListItem (true | false) false

In the example, name is the input control to set. If the input control is of type multi-select, the list of
selected values is composed of a set of parameter tags that have the same names and have the isListItem
attribute set to true, indicating that the parameter is part of a list.

The next example shows the getInputControlValues call for a cascading multi-select input control:
1. The IC_GET_QUERY_DATA argument gets the data from the data source.
2. The RU_REF_URI argument points to the report in which the input control is used.
3. Parameter tags under resourceDescriptor supply the parameters for the input control. The parameters’

specifics are derived from the ReportUnit resource properties (page 217).

ResourceDescriptor rd = new ResourceDescriptor();
rd.setUriString("/reports/samples/Cascading_multi_select_report_files/ Cascading_
state_multi_select");
rd.setResourceProperty(rd.PROP_QUERY_DATA, null);
ListItem li1 = new ListItem("Country_multi_select", "USA");
li1.setIsListItem(true);
rd.getParameters().add(li1);
ListItem li2 = new ListItem("Country_multi_select", "Mexico");
li2.setIsListItem(true);
rd.getParameters().add(li2);
java.util.List args = new java.util.ArrayList();
args.add(new Argument(Argument.IC_GET_QUERY_DATA, ""));
args.add(new Argument(Argument.RU_REF_URI, "/reports/samples/Cascading_multi_
select_report"));
ResourceDescriptor rd2 = wsclnt.get(rd, null, args);

if (rd2.getQueryData() != null) {
List l = (List) rd2.getQueryData();
for (Object dr : l) {

183

JasperReports Server Web Services Guide

InputControlQueryDataRow icdr = (InputControlQueryDataRow) dr;
for (Object cv : icdr.getColumnValues()) {
System.out.print(cv + " | ");

}
System.out.println();

}
}

Note the following conventions for parameter values:
• All parameter values are treated as strings; only number, string, and date/time values are allowed.
• Numbers cannot include punctuation for the digit grouping symbol (thousands separator) and must

use a period (.) as the decimal separator (if the relative parameter is not an integer).
• Dates and date/times must be represented as the number of milliseconds since January 1, 1970,

00:00:00 GMT.

8.8.1 Report Output
The files produced are attached to the response. Specify the final format of the report by setting the request RUN_
OUTPUT_FORMAT argument. Its possible values are: PDF, JRPRINT, HTML, XLS, XML, CSV and RTF. The default is
PDF.

If the final format is set to JRPRINT, the data attached to the response contains a serialized instance of a
JasperPrint object. This is the best format to use for clients in Java environments, because it provides the Java
client with access to all of JasperReports’ export options, and only relies on the server to fill the report.

The following Java code shows how to access the serialized object and get the JasperPrint object:

FileContent content = null;
if (attachments != null && !attachments.isEmpty()) {
content = (FileContent)(attachments.values().toArray()[0]);
}
if (content == null) {
throw new Exception("No JasperPrint");
}

InputStream is = new ByteArrayInputStream(content.getData());
JasperPrint print = (JasperPrint) JRLoader.loadObject(is);

If the specified output format is HTML, the URI for images can be set using the RUN_OUTPUT_IMAGES_URI
argument: the default value is images/. If images are found, they are attached to the response.

If only a single page should be printed, use the RUN_OUTPUT_PAGE argument, which must contain the index of
page to fill.

8.8.2 Report Locales
Reports that have resource bundles for localization can be generated in a specific languages when the locale is
passed using the REPORT_LOCALE built-in report parameter. If this parameter is not specified in the web service
request, the report locale defaults to the request's locale. If no locale was specified for the request, the report is
generated in the server's default locale.

184

Chapter 8 SOAP - Repository Web Service

The following XML shows a request to run a report in the Italian locale, which is passed as the value of the
REPORT_LOCALE built-in report parameter:

<request operationName="runReport" locale="fr">
<argument name="RUN_OUTPUT_FORMAT">JRPRINT</argument>
<resourceDescriptor name="" wsType="" uriString="/reports/samples/EmployeeAccounts"

isNew="false">
<label>null</label>
<parameter name="REPORT_LOCALE">it</parameter>
<parameter name="EmployeeID">emil_id</parameter>
</resourceDescriptor>
</request>

If the built-in report parameter is removed from this request, the report is generated in French, based on the
locale attribute of the request.

8.9 Errors
When the repository web service returns a code other than 0, an error has occurred during the server execution.
The exact error is described in the message field of the operation result.

If the problem is environmental, such as an incorrect service URL, an incorrect user name or password, network
errors, or an unavailable service, a web services error is retuned.

In deployments with multiple organizations, the organization ID must be included in the user name in the
format username|organization_ID. When there is only one organization exists in JasperReports
Server, such as in the default installation, specify the user name alone.

The following shows an Axis connection refused error:

AxisFault
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.userException
faultSubcode:
faultString: java.net.ConnectException: Connection refused: connect
faultActor:
faultNode:
faultDetail:
{http://xml.apache.org/axis/}stackTrace:java.net.ConnectException: Connection refused: connect
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:333)
at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:195)
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:182)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366)

The following shows an Axis user name/password error:

AxisFault
faultCode: {http://xml.apache.org/axis/}HTTP
faultSubcode:
faultString: (401)Bad credentials
faultActor:
faultNode:
faultDetail:

185

JasperReports Server Web Services Guide

{}:return code: 401

<html><head><title>Apache Tomcat/5.5.16 - Error re
port</title><style><!--H1 {font-family:Tahoma,Arial,sans-serif;co
lor:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial
,sans-serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-famil
y:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:14px;}
BODY {font-family:Tahoma,Arial,sans-serif;color:black;background-color:white;} B
{font-family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;} P {
font-family:Tahoma,Arial,sans-serif;background:white;color:black;font-size:12px;
}A {color : black;}A.name {color : black;}HR {color : #525D76;}--></style&
gt; </head><body><h1>HTTP Status 401 - Bad credentials</h1&
gt;<HR size="1" noshade="noshade"><p>ty
pe Status report</p><p>message <u>
;Bad credentials</u></p><p>description <
u>This request requires HTTP authentication (Bad credentials).</u></
p><HR size="1" noshade="noshade"><h3>Apache T
omcat/5.5.16</h3></body></html>
{http://xml.apache.org/axis/}HttpErrorCode:401

(401)Bad credentials
at org.apache.axis.transport.http.HTTPSender.readFromSocket(HTTPSender.java:744)
at org.apache.axis.transport.http.HTTPSender.invoke(HTTPSender.java:144)
at org.apache.axis.strategies.InvocationStrategy.visit(InvocationStrategy.java:32)
at org.apache.axis.SimpleChain.doVisiting(SimpleChain.java:118)
at org.apache.axis.SimpleChain.invoke(SimpleChain.java:83)
at org.apache.axis.client.AxisClient.invoke(AxisClient.java:165)

8.10 Implementation Suggestions
The iReport plugin for JasperReports Server relies on the repository web service described in this document. If
you use Java, Jaspersoft recommends that you familiarize yourself with the plugin’s source code, as it can help
you understand how best to implement your own web services client. It is included in JasperReports Server
Professional and Enterprise editions. It is also available in the JasperReports Server source code on SourceForge.
In the source code, look for the plug-in files in this location: jasperserver/jasperserver-ireport-plugin.
Download the ZIP file that contains the iReport plugin. In particular, this JAR can be very illuminating:

<js-install>\ireport\ireport\modules\com-jaspersoft-ireport-jasperserver.jar

Its dependencies, located in <js-install>\ireport\ireport\modules\ext, are:
• js_activation-1.1.jar

• js_axis-1.4patched.jar

• js_commons-codec-1.3.jar

• js_commons-discovery-0.2.jar

• js_commons-httpclient-3.1.jar

• js_jasperserver-common-ws-3.5.0.jar

• js_jaxrpc.jar

• js_mail-1.4.jar

• js_saaj-api-1.3.jar

• js_wsdl4j-1.5.1.jar

If necessary, you can marshal and unmarshal request and response objects by using the following classes:
• com.jaspersoft.jasperserver.ws.xml.Marshaller
• com.jaspersoft.jasperserver.ws.xml.Unmarshaller

186

http://sourceforge.net/project/showfiles.php?group_id=162962
http://sourceforge.net/project/showfiles.php?group_id=162962
http://sourceforge.net/project/showfiles.php?group_id=162962
http://sourceforge.net/project/showfiles.php?group_id=162962

Chapter 8 SOAP - Repository Web Service

If you use a development environment other than Java (such as .NET), you can easily generate a client from the
WSDL.

187

JasperReports Server Web Services Guide

188

CHAPTER 9 SOAP - REPORT SCHEDULING WEB SERVICE

With the completion of the REST v2 API in JasperReports Server 5.5, Jaspersoft announces the end of life
of the SOAP web services. The SOAP web services will no longer be maintained or updated to support
new features of the server.

The scheduling web service exposes JasperReports Server’s report scheduling functionality to integrating
applications by the means of a dedicated web service. The web service is the equivalent of the API report
scheduling service
(com.jaspersoft.jasperserver.api.engine.scheduling.service.ReportSchedulingService) and
exposes the same operations as this API service.

The service works via XML-RPC calls that use the SOAP encoding. It uses the HTTP protocol to send and
receive requests and responses. By default, it is deployed at /services/ReportScheduler. You can retrieve
the service WSDL (Web Service Description Language) document by appending ?wsdl to the service URL. For
example:

http://localhost:8080/jasperserver-pro/services/ReportScheduler?wsdl

This chapter includes the following sections:
• Types Defined in the WSDL
• Operations in the Scheduling Service
• Java Client Classes

9.1 Types Defined in the WSDL
The WSDL defines several types that are used by the parameters and operation result of the service. The types
belong to the http://www.jasperforge.org/jasperserver/ws namespace. The namespace is only an
identifier; it is not a valid URL.

This section provides a partial list of the types used for report scheduling; for the complete reference, refer to the
WSDL document. The report scheduling types include:

189

JasperReports Server Web Services Guide

Type Type Element Description

Job Encapsulates all the attributes of a report job. This
type is used when full report job details are passed to
or returned by an operation.

ID and version Required when updating a report job

reportUnitURI URI of the report

username Set automatically to the name of the calling user when
a report job is created

label Job label.

simpleTrigger or
calendarTrigger

Job trigger, which can be either a simple (fixed
interval) trigger or a calendar trigger

parameters List of report parameter/input control values

baseOutputFilename Base name for the job output

outputFormats List of job output formats (as strings). JasperReports
Server has built-in support for the following formats:
PDF, HTML, XLS, RTF and CSV.

outputLocale String representation of a java.util.Locale to be
used as report locale

repositoryDestination Location in the repository where the report output is
saved

mailNotification Information regarding the email notification that is sent
when the job executes. Set this value to NULL to
suppress notifications.

Note: To use this feature, you must configure a mail
server, as described in JasperReports Server
Administrator Guide.

JobSimpleTrigger Job trigger that fires at fixed intervals

startDate and endDate Start and end dates of the job

timezone Time zone of the start and end dates

occurrenceCount How many times to run the job. If a single run job is
wanted, use 1 as occurrence count; if the job is to be
fired indefinitely or until the end date, use -1.

190

Chapter 9 SOAP - Report Scheduling Web Service

Type Type Element Description

recurrenceInterval
and
recur-
renceIntervalUnit

Interval at which the job should recur: MINUTE, HOUR,
DAY, WEEK.

JobCalendarTrigger Job trigger that fires at a time specified by a CRON-
like expression

startDate and endDate Start and end dates of the job

timezone Time zone of the start and end dates

minutes Minute or minutes of the day when the job is to run.

hours Hour or hours of the day when the job is to run.

daysType How days are specified. Possible values are ALL,
WEEK, and MONTH.

weekDays Used when daysType is WEEK; this indicates the days
of the week from Saturday (1) to Sunday (7).

monthDays Used when daysType is MONTH, this indicates the
month days.

months Months (from 0 to 11) on which the job should be
triggered.

JobRepositoryDestination Information about where to save the report job output
in the repository.

folderURI URI of the folder where the report output will be
saved.

sequentialFilenames Flag indicating whether to append timestamps to the
base output name.

JobMailNotification Encapsulates the attributes of the mail notification to
send regarding the report job.

toAddresses List of email addresses to which the notification will be
sent.

subject Subject of the email notification.

191

JasperReports Server Web Services Guide

Type Type Element Description

resultSendType Indicates whether to attach the report output to the
email; the value is either SEND (only the messages is
sent) or SEND_ATTACHMENT (the report output is
sent along as a message attachment).

JobSummary Used when a list of report jobs is retrieved via the
service. The full report job information can be
retrieved individually for required jobs.

id Unique identifier of the job.

label Display label of the job.

state State of the job. For example, NORMAL indicates that
the job is waiting for next execution; EXECUTING
means the job is running.

previousFireTime Most recent run time.

nextFireTime Next run time.

9.2 Operations in the Scheduling Service

9.2.1 Operation Descriptions
The report scheduling web service consists of the following operations:
• getAllJobs. Returns the list of all accessible report jobs.
• getReportJobs. Returns the list of all accessible report jobs for a specific report (whose URL is sent as a

parameter).
• scheduleJob. Schedules a new job. The job details must be sent as parameters; the operation returns the

saved job details as its result.
• updateJob. Updates an existing job. The full job details (as retrieved via getJob) must be sent as a

parameter; the operation returns the updated job details as saved by the JasperReports Server scheduling
service.

• getJob. Returns the full job details of a report job whose ID is sent as a parameter.
• deleteJob and deleteJobs. Delete a single or several report job specified by their IDs. These operations

do not return any information.

If an exception occurs while processing an operation request, the exception is converted to a SOAP fault which
is sent as its response. In this case, the exception stacktrace is included in the response, and can be used for
debugging.

Exceptions thrown by the JasperReports Server code have localizable messages. The operation caller can specify
the locale in which the messages of such exceptions are returned by setting a SOAP envelope header. The
header should be named locale and should use http://www.jasperforge.org/jasperserver/ws as

192

Chapter 9 SOAP - Report Scheduling Web Service

namespace; the header value is a string representation of the desired message locale. For more information, refer
to 8.1, “Request and Operation Result,” on page 171.

9.2.2 Example Request and Operation Result
This is the full SOAP request for a scheduleJob operation that creates a job with four report parameters:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:scheduleJob soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/

" xmlns:ns1="http://www.jasperforge.org/jasperserver/ws">
<job xsi:type="ns1:Job">
<reportUnitURI xsi:type="xsd:string">/reports/samples/SalesByMonth
</reportUnitURI>
<username xsi:type="xsd:string" xsi:nil="true"/>
<label xsi:type="xsd:string">Label 3</label>
<description xsi:type="xsd:string">Description 3</description>
<simpleTrigger xsi:type="ns1:JobSimpleTrigger">
<timezone xsi:type="xsd:string" xsi:nil="true"/>
<startDate xsi:type="xsd:dateTime">2008-10-09T09:25:00.000Z</startDate>
<endDate xsi:type="xsd:dateTime" xsi:nil="true"/>
<occurrenceCount xsi:type="xsd:int">1</occurrenceCount>
<recurrenceInterval xsi:type="xsd:int" xsi:nil="true"/>
<recurrenceIntervalUnit xsi:type="ns1:IntervalUnit" xsi:nil="true"/>

</simpleTrigger>
<calendarTrigger xsi:type="ns1:JobCalendarTrigger" xsi:nil="true"/>
<parameters soapenc:arrayType="ns1:JobParameter[4]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<parameters xsi:type="ns1:JobParameter">
<name xsi:type="xsd:string">TextInput</name>
<value xsi:type="soapenc:int">22</value>

</parameters>
<parameters xsi:type="ns1:JobParameter">
<name xsi:type="xsd:string">CheckboxInput</name>
<value xsi:type="soapenc:boolean">true</value>

</parameters>
<parameters xsi:type="ns1:JobParameter">
<name xsi:type="xsd:string">ListInput</name>
<value xsi:type="soapenc:string">2</value>

</parameters>
<parameters xsi:type="ns1:JobParameter">
<name xsi:type="xsd:string">DateInput</name>
<value xsi:type="xsd:dateTime">2007-10-09T09:00:00.000Z</value>

</parameters>
</parameters>
<baseOutputFilename xsi:type="xsd:string">Sales3</baseOutputFilename>
<outputFormats soapenc:arrayType="xsd:string[1]" xsi:type=
"soapenc:Array" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/">
<outputFormats xsi:type="xsd:string">PDF</outputFormats>

</outputFormats>
<outputLocale xsi:type="xsd:string" xsi:nil="true"/>

<repositoryDestination xsi:type="ns1:JobRepositoryDestination">

193

JasperReports Server Web Services Guide

<folderURI xsi:type="xsd:string">/ContentFiles</folderURI>
<sequentialFilenames xsi:type="xsd:boolean">false
</sequentialFilenames>
<overwriteFiles xsi:type="xsd:boolean">false</overwriteFiles>

</repositoryDestination>
<mailNotification xsi:type="ns1:JobMailNotification" xsi:nil="true"/>

</job>
</ns1:scheduleJob>

</soapenv:Body>
</soapenv:Envelope>

The response of the request contains the job details as saved by the server:

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<soapenv:Body>
<ns1:scheduleJobResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:ns1="http://www.jasperforge.org/jasperserver/ws">
<scheduleJobReturn xsi:type="ns1:job">
<id xsi:type="xsd:long">7</id>
<version xsi:type="xsd:int">0</version>
<reportUnitURI xsi:type="xsd:string">/reports/samples/SalesByMonth</
reportUnitURI>

<username xsi:type="xsd:string">tomcat</username>
<label xsi:type="xsd:string">Label 3</label>
<description xsi:type="xsd:string">Description 3</description>
<simpleTrigger xsi:type="ns1:jobSimpleTrigger">
<id xsi:type="xsd:long">7</id>
<version xsi:type="xsd:int">0</version>

<timezone xsi:type="xsd:string">Europe/Minsk</timezone>
<startDate xsi:type="xsd:dateTime">2008-10-09T09:25:00.000Z</startDate>
<endDate xsi:type="xsd:dateTime" xsi:nil="true"/>
<occurrenceCount xsi:type="xsd:int">1</occurrenceCount>
<recurrenceInterval xsi:type="xsd:int" xsi:nil="true"/>
<recurrenceIntervalUnit xsi:type="ns1:IntervalUnit" xsi:nil="true"/>

</simpleTrigger>

<calendarTrigger xsi:type="ns1:JobCalendarTrigger" xsi:nil="true"/>

<parameters soapenc:arrayType="ns1:JobParameter[4]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<parameters xsi:type="ns1:jobParameter">
<name xsi:type="xsd:string">CheckboxInput</name>
<value xsi:type="soapenc:boolean">true</value>

</parameters>
<parameters xsi:type="ns1:jobParameter">
<name xsi:type="xsd:string">TextInput</name>
<value xsi:type="soapenc:int">22</value>

</parameters>

<parameters xsi:type="ns1:jobParameter">
<name xsi:type="xsd:string">DateInput</name>
<value xsi:type="xsd:dateTime">2007-10-09T09:00:00.000Z</value>

</parameters>
<parameters xsi:type="ns1:jobParameter">

194

Chapter 9 SOAP - Report Scheduling Web Service

<name xsi:type="xsd:string">ListInput</name>
<value xsi:type="soapenc:string">2</value>

</parameters>
</parameters>
<baseOutputFilename xsi:type="xsd:string">Sales3</baseOutputFilename>
<outputFormats soapenc:arrayType="xsd:string[1]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<outputFormats xsi:type="xsd:string">PDF</outputFormats>

</outputFormats>
<outputLocale xsi:type="xsd:string" xsi:nil="true"/>
<repositoryDestination xsi:type="ns1:jobRepositoryDestination">
<id xsi:type="xsd:long">7</id>
<version xsi:type="xsd:int">0</version>
<folderURI xsi:type="xsd:string">/ContentFiles</folderURI>
<sequentialFilenames xsi:type="xsd:boolean">false</sequentialFilenames>
<overwriteFiles xsi:type="xsd:boolean">false</overwriteFiles>

</repositoryDestination>
<mailNotification xsi:type="ns1:JobMailNotification" xsi:nil="true"/>

</scheduleJobReturn>
</ns1:scheduleJobResponse>

</soapenv:Body>
</soapenv:Envelope>

9.3 Java Client Classes
The JasperReports Server web service client jars contain classes that can be used by Java clients to easily
communicate with the report scheduling web service.

XML types used by the report scheduling web service are mapped to Java bean classes found in the weekday
package (for example, Job, JobSimpleTrigger, and CalendarDaysType). Instances of these classes can be
used as report job objects that are sent to or returned by the web service.

The service itself is represented by Apache Axis-generated client stub classes. A façade
(com.jaspersoft.jasperserver.ws.scheduling.ReportSchedulerFacade) has been developed on top of
these classes. The façade can be instantiated by providing the information required to locate and connect to a
web service (the endpoint URL and the username/password for authentication).

Jaspersoft recommends using the façade because it handles items such as the Axis client configuration and the
messages locale header.

195

JasperReports Server Web Services Guide

196

CHAPTER 10 SOAP - DOMAIN WEB SERVICE

With the completion of the REST v2 API in JasperReports Server 5.5, Jaspersoft announces the end of life
of the SOAP web services. The SOAP web services will no longer be maintained or updated to support
new features of the server.

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

The Domain web service exposes a limited subset of JasperReports Server’s Domain functionality to integrating
applications by the means of a dedicated web service. Applications may only read the contents of a Domain,
not create or edit Domains.

The service works via XML-RPC calls that use the SOAP encoding. It uses the HTTP protocol to send and
receive requests and responses. By default, it is deployed at /services/DomainServices. You can retrieve the
WSDL document by appending ?wsdl to the service URL. For example:

http://localhost:8080/jasperserver-pro/services/DomainServices?wsdl

This chapter contains the following sections:
• Types Defined in the WSDL
• Operations in the Domain Service

10.1 Types Defined in the WSDL
The WSDL defines several types that are returned by operations of the service. The types belong to the
http://www.jasperforge.org/jasperserver/ws namespace. The namespace is only an identifier; it is not a
valid URL. For the complete reference, refer to the WSDL document.

These are the objects returned when accessing Domains:
• SimpleMetaData. Encapsulates all the sets and items in a Domain structure.
• SimpleMetaLevel. Represents an item set in the Domain. It may contain items, other item sets, or both.
• SimpleMetaItem. An item in the Domain. Unlike a level or set, an item is a source of data referenceable in

a query.
• ResultSetData. Object returned by a Domain query. It contains column names and rows of data.

197

JasperReports Server Web Services Guide

• DataRow. Contains values for each column in a row.

10.2 Operations in the Domain Service
The Domain web service provides the following operations:
• getDomainMetaData. Returns the tree structure of sets and items in a Domain. The object returned can be

used to render the Domain for users and allow them to select items for a query.
• executeDomainQuery. Returns a set of values in response to a query.

If an exception occurs while processing an operation request, the exception is converted to a SOAP fault that is
sent as its response. In this case, the exception stacktrace is included in the response, which can be useful for
debugging.

Exceptions thrown by JasperReports Server have localizable messages. The operation caller can specify the
locale in which the messages of such exceptions are returned by setting a SOAP envelope header. The header
should be named locale and should use http://www.jasperforge.org/jasperserver/ws as its
namespace; the header value is a string representation of the desired message locale. For more information, see
8.1, “Request and Operation Result,” on page 171.

10.2.1 The getDomainMetaData Operation

The getDomainMetaData operation takes these parameters:
• domainUri - a string containing the path to the Domain on the server, for example

/domains/John/ExpenseDomain.
• localeStr - a string giving the user locale, for example en, en_US, or es_ES_Traditional_WIN.

The operation returns the tree structure of item sets and items in the requested Domain. The tree structure
consists of levels that represent the nested sets and items that represent the items in the Domain. Levels may
contain sub-levels, items, or both, thus modelling the hierarchical structure of the Domain.

The following object types are combined to create the tree structure in the return value:
• SimpleMetaData. Encapsulates all the item sets and items in a Domain structure:

• rootLevel. The SimpleMetaLevel object that is the root of the Domain tree structure.
• properties.Tthere are currently no properties on this object.

• SimpleMetaLevel. Represents an item set in the Domain. It has the following attributes:
• id and label. Unique identifier and label string for this item set.
• items. An array of SimpleMetaItem objects representing the items in this set.
• subLevels. An array of SimpleMetaLevel objects representing the sub-sets of this set.
• properties. The resourceId key indicates the resource identifier of this item set.

• SimpleMetaItem. An item in the Domain. It has the following attributes:
• id and label. Unique identifier and label string for this item.
• javaType. The Java class name of this item, for example java.lang.String.
• properties. The javaType key is identical to the javaType attribute, and the resourceId key

indicates the resource identifier of this item.

A resource identifier is an internal property that identifies the data resource that the set or item references.
Web applications do not need to process or return this value.

This is the full SOAP request for a getDomainMetaData operation:

198

Chapter 10 SOAP - Domain Web Service

<?xml version="1.0" encoding="utf-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<soapenv:Body>
<ns1:getDomainMetaData soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:ns1="http://www.jasperforge.org/jasperserver/ws">
<domainUri xsi:type="xsd:string">/Domains/examples/SampleDomain</domainUri>
<localeStr xsi:type="xsd:string">US</localeStr>

</ns1:getDomainMetaData>
</soapenv:Body>

</soapenv:Envelope>

The response of the request contains the tree structure of the Domain:

<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope xmlns:so-
apenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:getDomainMetaDataResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" xmlns:ns1="http://www.jasperforge.org/jasperserver/ws">
<getDomainMetaDataReturn xsi:type="ns1:SimpleMetaData">
<rootLevel xsi:type="ns1:SimpleMetaLevel">
<id xsi:type="xsd:string">root</id>
<label xsi:type="xsd:string" xsi:nil="true"/>
<properties soapenc:arrayType="ns1:SimpleProperty[0]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>

<items soapenc:arrayType="ns1:SimpleMetaItem[0]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>

<subLevels soapenc:arrayType="ns1:SimpleMetaLevel[7]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<subLevels xsi:type="ns1:SimpleMetaLevel">
<id xsi:type="xsd:string">expense_join</id>
<label xsi:type="xsd:string">expense</label>
<properties soapenc:arrayType="ns1:SimpleProperty[1]" xsi:type=
"soapenc:Array">
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">resourceId</key>
<value xsi:type="xsd:string">expense_join</value>

</properties>
</properties>
<items soapenc:arrayType="ns1:SimpleMetaItem[2]" xsi:type="soapenc:Array">
<items xsi:type="ns1:SimpleMetaItem">
<id xsi:type="xsd:string">ej_expense_fact_exp_date</id>
<label xsi:type="xsd:string">Exp Date</label>
<javaType xsi:type="xsd:string">java.sql.Date</javaType>
<properties soapenc:arrayType="ns1:SimpleProperty[2]" xsi:type=
"soapenc:Array">
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">JavaType</key>
<value xsi:type="xsd:string">java.sql.Date</value>

</properties>
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">resourceId</key>
<value xsi:type="xsd:string">expense_join.e.exp_date</value>

</properties>

199

JasperReports Server Web Services Guide

</properties>
</items>
<items xsi:type="ns1:SimpleMetaItem">
<id xsi:type="xsd:string">ej_expense_fact_amount</id>
<label xsi:type="xsd:string">Amount</label>
<javaType xsi:type="xsd:string">java.math.BigDecimal</javaType>
<properties soapenc:arrayType="ns1:SimpleProperty[2]" xsi:type=
"soapenc:Array">
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">JavaType</key>
<value xsi:type="xsd:string">java.math.BigDecimal</value>

</properties>
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">resourceId</key>
<value xsi:type="xsd:string">expense_join.e.amount</value>

</properties>
</properties>

</items>
</items>
<subLevels soapenc:arrayType="ns1:SimpleMetaLevel[0]" xsi:type=
"soapenc:Array"/>

</subLevels>
<subLevels xsi:type="ns1:SimpleMetaLevel">
<id xsi:type="xsd:string">expense_join_store</id>
<label xsi:type="xsd:string">store</label>
<properties soapenc:arrayType="ns1:SimpleProperty[1]" xsi:type=
"soapenc:Array">
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">resourceId</key>
<value xsi:type="xsd:string">expense_join</value>

</properties>
</properties>
<items soapenc:arrayType="ns1:SimpleMetaItem[24]" xsi:type=
"soapenc:Array">
<items xsi:type="ns1:SimpleMetaItem">
<id xsi:type="xsd:string">ej_store_store_type</id>
<label xsi:type="xsd:string">Store Type</label>
<javaType xsi:type="xsd:string">java.lang.String</javaType>
<properties soapenc:arrayType="ns1:SimpleProperty[2]" xsi:type=
"soapenc:Array">
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">JavaType</key>
<value xsi:type="xsd:string">java.lang.String</value>

</properties>
<properties xsi:type="ns1:SimpleProperty">
<key xsi:type="xsd:string">resourceId</key>
<value xsi:type="xsd:string">expense_join.s.store_type</value>

</properties>
</properties>

</items>
...

</items>
<subLevels soapenc:arrayType="ns1:SimpleMetaLevel[0]" xsi:type=
"soapenc:Array"/>

</subLevels>
</subLevels>

200

Chapter 10 SOAP - Domain Web Service

</rootLevel>
<properties soapenc:arrayType="ns1:SimpleProperty[0]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>

</getDomainMetaDataReturn>
</ns1:getDomainMetaDataResponse>

</soapenv:Body>
</soapenv:Envelope>

10.2.2 The executeDomainQuery Operation

The executeDomainQuery operation takes these parameters:
• domainUri - a string containing the path to the Domain on the server, for example

/domains/John/ExpenseDomain.
• queryStr - a string containing the Domain query composed of fields and a filter expression (see below for

the syntax).
• localeStr - a string giving the user locale, for example en, en_US, or es_ES_Traditional_WIN.
• dateFormatStr - a string giving the date format desired in date fields, for example MM/dd/yyyy or h:mm a.

Be sure the format has date and time portions if you expect to have both date and time fields, for example
yyyy.MM.dd G 'at' HH:mm:ss z

The query string is composed of the following elements that create a syntax for the Domain query:
• <query> - encapsulates the whole query.
• <queryFields> - contains a sequence of <queryField> elements. The order of fields will be preserved in

the results.
• <queryField id="<fullyQualifiedID>" /> - an empty element where <fullyQualifiedID> gives the

unique identifier of an item you want to appear as a column in the results. The identifier must be fully
qualified, which means it includes the identifiers of the set and super-sets to which the item belongs. The
fully qualified identifier is similar to the path of the item in the Domain, using a period (.) to separate each
set identifier.

• <queryFilterString> - the filter string for the query uses an application-specific syntax called Domain
Expression Language (DomEL).

The following example shows a filter string that must match two values:

<query>
<queryFields>
<queryField id="expense_join_store.ej_store_store_city" />
<queryField id="expense_join_store.ej_store_store_country" />
<queryField id="expense_join_store.ej_store_store_name" />
<queryField id="expense_join_store.ej_store_store_state" />
<queryField id="expense_join_store.ej_store_store_street_address" />

</queryFields>
<queryFilterString>expense_join_store.ej_store_store_country == 'USA' and
expense_join_store.ej_store_store_state == 'CA'</queryFilterString>

</query>

Note that when the query string appears in the SOAP example below, special characters such as < and > are
converted to their corresponding character entities, < and > respectively.

The executeDomainQuery operation returns results in the following objects:

201

JasperReports Server Web Services Guide

• ResultSetData. Encapsulates the results of the Domain query. It contains column names and rows of data:
• names. Array of column names in the result set. These names match the order and items in the query

fields.
• data. An array of data rows.

• DataRow. Represents a record and contains values for each column in a row:
• data. An array of strings, one for the value in each column, in the same order as the names array.

Note that all values are given in string format.

The following example shows the full SOAP request for an executeDomainQuery operation on a sample
Domain:

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:executeDomainQuery soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:ns1="http://www.jasperforge.org/jasperserver/ws">
<domainUri xsi:type="xsd:string">/Domains/examples/SampleDomain</domainUri>
<queryStr xsi:type="xsd:string"><query> <queryFields> <queryField id="expense_join_account.ej_account_

account_description"/><queryField id="expense_join_account.ej_expense_fact_account_id" /> <queryField
id="expense_join_account.ej_account_account_parent" /> <queryField id="expense_join_account.ej_account_account_
rollup" /> <queryField id="expense_join_account.ej_account_account_type" /> <queryField id="-
;expense_join_account.ej_account_Custom_Members" /> <queryField id="expense_join.ej_expense_fact_amount" />
<queryField id="expense_join.ej_expense_fact_exp_date" /> <queryField id="expense_join_store.ej_store_store_

type" /><queryField id="expense_join_store.ej_store_store_street_address" /> <queryField id="expense_
join_store.ej_store_store_city" /> <queryField id="expense_join_store.ej_store_store_state" /><queryField
id="expense_join_store.ej_store_store_postal_code" /> <queryField id="expense_join_store.ej_store_store_coun-
try" /> <queryFields> <queryFilterString>expense_join_account.ej_account_account_description == 'Mar-
keting'</queryFilterString></query></queryStr>

<localeStr xsi:type="xsd:string">US</localeStr>
<dateFormatStr xsi:type="xsd:string">MM/dd/yyyy</dateFormatStr>

</ns1:executeDomainQuery>
</soapenv:Body>

</soapenv:Envelope>

The response to the request contains the current values in the specified Domain:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:executeDomainQueryResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" xmlns:ns1="http://www.jasperforge.org/jasperserver/ws">
<executeDomainQueryReturn xsi:type="ns1:ResultSetData">
<names soapenc:arrayType="xsd:string[31]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<names xsi:type="xsd:string">expense_join_account.ej_account_account_
description/>

<names xsi:type="xsd:string">expense_join_account.ej_expense_fact_
account_id/>

202

Chapter 10 SOAP - Domain Web Service

<names xsi:type="xsd:string">expense_join_account.ej_account_account_parent/>
<names xsi:type="xsd:string">expense_join_account.ej_account_account_rollup/>
<names xsi:type="xsd:string">expense_join_account.ej_account_account_type/>
<names xsi:type="xsd:string">expense_join_account.ej_account_Custom_Members/>
<names xsi:type="xsd:string">expense_join.ej_expense_fact_amount/>

<names xsi:type="xsd:string">expense_join_store.ej_store_store_type/>
<names xsi:type="xsd:string">expense_join_store.ej_store_store_street_
address/>

<names xsi:type="xsd:string">expense_join_store.ej_store_store_city/>
<names xsi:type="xsd:string">expense_join_store.ej_store_store_state/>
<names xsi:type="xsd:string">expense_join_store.ej_store_store_postal_code/>

</names>
<data soapenc:arrayType="ns1:DataRow[600]" xsi:type="soapenc:Array"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<data xsi:type="ns1:DataRow">
<data soapenc:arrayType="xsd:string[31]" xsi:type="soapenc:Array">
<data xsi:type="xsd:string">Marketing</data>
<data xsi:type="xsd:string">4300</data>
<data xsi:type="xsd:string">4000</data>
<data xsi:type="xsd:string">+</data>
<data xsi:type="xsd:string">Expense</data>
<data xsi:type="xsd:string" xsi:nil="true"/>
<data xsi:type="xsd:string">1884.0000</data>
<data xsi:type="xsd:string">01/01/1997</data>
<data xsi:type="xsd:string">HeadQuarters</data>
<data xsi:type="xsd:string">1 Alameda Way</data>
<data xsi:type="xsd:string">Alameda</data>
<data xsi:type="xsd:string">CA</data>
<data xsi:type="xsd:string">94502</data>
<data xsi:type="xsd:string">USA</data>

</data>
</data>

...
</data>

</executeDomainQueryReturn>
</ns1:executeDomainQueryResponse>

</soapenv:Body>
</soapenv:Envelope>

10.2.3 Java Client Classes
The JasperReports Server web service includes classes in JAR files that can be used by Java clients to easily
communicate with the Domain web service.

Java bean classes for the XML types declared in WSDL (for example, SimpleMetaLevel, SimpleMetaItem,
ResultSetData and DataRow) are located in ji-common-ws-server-5.6.0.jar in the
com.jaspersoft.ji.ws.axis2.domain.generate package. Instances of these classes can be used to
communicate with the Domain web service.

203

JasperReports Server Web Services Guide

204

CHAPTER 11 SOAP - WEB SERVICES FOR ADMINISTRATION

With the completion of the REST v2 API in JasperReports Server 5.5, Jaspersoft announces the end of life
of the SOAP web services. The SOAP web services will no longer be maintained or updated to support
new features of the server.

Web services for administration expose a limited set of JasperReports Server’s system administration
functionality. There are three services:
• Users and Roles
• Organizations/Tenants
• Permissions

The services work via XML-RPC calls that use the SOAP encoding. They use the HTTP protocol to send and
receive requests and responses. By default, they are deployed at
/services/UserAndRoleManagementService, /services/OrganizationManagementService, and
/services/PermissionsManagementService. You can retrieve the WSDL documents by appending ?wsdl
to the service URL. For example:

http://localhost:8080/jasperserver-pro/services/UserAndRoleManagementService?wsdl

If an exception occurs while processing an operation request, the exception is converted to a SOAP fault that is
sent as its response. In this case, the exception stacktrace is included in the response, which can be useful for
debugging.

Exceptions thrown by JasperReports Server have localizable messages. The operation caller can specify the
locale in which the messages of such exceptions are returned by setting a SOAP envelope header. The header
should be named locale and should use http://www.jasperforge.org/jasperserver/ws as its namespace;
the header value is a string representation of the desired message locale. For more information, refer to
section 8.1, “Request and Operation Result,” on page 171.

All authentication and authorization rules established in the system apply to operations run through the web
services. Refer to Jasper Administrator Guide for more information about the rules.

This chapter includes the following sections:
• Types Defined in the WSDL
• Users and Roles
• Organizations/Tenants
• Permissions
• Related Files

205

JasperReports Server Web Services Guide

11.1 Types Defined in the WSDL
The WSDL (Web Services Description Language) document defines the types that are returned by operations of
the services. The types belong to the http://www.jasperforge.org/jasperserver/ws namespace. The
namespace is only an identifier; it is not a valid URL. For the complete reference, refer to the WSDL document
in jasperserver-ws-server-4.0.jar.

The following tables summarize the services’ operations.

Users and Roles Service

Operation Param-
eter

Parameter Type Return Type Description

findUsers criteria WSU-
serSearchCriteria

WSUser[] Returns a list of one or more
users.

criteria has username
mask, organization/tenant ID,
includeSubOrgs, list of
required roles, and
maxRecords; null in
parameters means "any."

Note: includeSubOrgs and
tenantID are reserved for use
in our commercial products. If
they are used in community
project products, they must be
NULL.

putUser user WSUser WSUser Adds or updates a user.

Returns the new or updated
WSUser.

deleteUser user WSUser No return Deletes the named user.

findRoles criteria WSRole-
SearchCriteria

WSRole[] Returns WSRole[], a list of
roles.

criteria has rolename mask,
organization/tenant ID,
includeSubOrgs,
maxRecords; null in
parameters means "any."

Note: includeSubOrgs and
tenantID are reserved for use
in our commercial products. If
they are used in community
project products, they must be
NULL.

206

Chapter 11 SOAP - Web Services for Administration

Users and Roles Service

Operation Param-
eter

Parameter Type Return Type Description

putRole role WSRole WSRole Adds or updates a role.

Returns new or updated
WSRole.

updat-
eRoleName

oldRole WSRole WSRole Returns WSRole.

newName String WSRole New name of role.

deleteRole role WSRole No return Deletes the named role.

Organizations/Tenants Service

Operation Param-
eter

Parameter Type Return
Type

Description

getTenant tenantId String WSTenant
[]

Organization/tenant identifier.

Returns an
organization/tenant.

get-
SubTenantList

tenantId String WSTenant
[]

Organization/tenant identifier.

Returns WSTenant[], a list of
suborganizations in the
specified organization.

putTenant tenant WSTenant WSTenant Adds or updates a tenant.

Returns the new or updated
WSTenant.

deleteTenant tenantId String No return Deletes the named
organization/tenant.

Permissions Service

Operation Param-
eter

Parameter Type Return Type Description

get-
Per-
missionsForObject

tar-
getURI

String WSOb-
jectPermission
[]

Repository object URI.

Returns
WSObjectPermission[],
a list of permissions for the
specified object.

207

JasperReports Server Web Services Guide

Permissions Service

Operation Param-
eter

Parameter Type Return Type Description

putPermissions objPerm WSOb-
jectPermission

WSOb-
jectPermission

Object permission.

Returns
WSObjectPermission, a
new or updated object
permission.

deletePermissions objPerm WSOb-
jectPermission

No return Deletes the named
permission.

11.2 Users and Roles
The web service for administration of users and roles has these operations:
• findUsers and findRoles. Return a list of users or roles that meet specified criteria.
• putUser and putRole. Return the named user or role. If the object is not already in the database, the call

creates a new one.
• deleteUser and deleteRole. Delete the named user or role.

11.2.1 findUsers
In findUsers, the parameter criteria has the type WSUserSearchCriteria and returns type WSUser.
criteria can be a username mask, an organization/tenant ID, includeSubOrgs, a list of required users, and
maxRecords. Null values indicate "any."
• The mask has an SQL-like notation. For instance, U2_.
• When includeSubOrgs is TRUE, all objects of the specified type are within a search’s scope and result.

Otherwise, only objects in the requested organization (or root if tenantId=null) are searched.
• To limit the number of objects to return, set maxRecords to the desired number. To allow an infinite

number of objects, set maxRecords to 0.

To call findUsers:

WSUserSearchCriteria searchCriteria = new WSUserSearchCriteria();
searchCriteria.setName(“demo”);
searchCriteria.setTenantId(“organization_1”); // Name of orga nization or null
searchCriteria.setMaxRecords(5);
searchCriteria.setIncludeSubOrgs(false);
searchCriteria.setRequiredRoles(requiredRoles);

WSRole role = new WSRole();
role.setRoleName("ROLE_USER");
role.setTenantId(null);
searchCriteria.setRequiredRoles(new WSRole[] {role});
WSUser[] list = binding.findUsers(searchCriteria);

The return is:

208

Chapter 11 SOAP - Web Services for Administration

String getUsername()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()
String getRoleName()
String getTenantId()
WSUser[] getUsers()

11.2.2 putUser
In putUser, the parameter user has the type WSUser and returns type WSUser.

putUser updates an existing object; if the specified user does not exist, a new one is created.

Before adding users and roles, note that there is a server-side configuration which specifies the default
roles that a new user can receive. See the JasperReports Server Administrator Guide for details

To call putUser:

WSUser user = new WSUser();
user.setUsername("john");
user.setTenantId("organization_1");
user.setEnabled(true);
user.setFullName("John Doe");
WSRole role = new WSRole();
role.setRoleName("ROLE_ANONYMOUS");
role.setTenantId(null);
user.setRoles(new WSRole[] {role});
WSUser value = binding.putUser(user);

The return is:

String getUsername()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()
String getRoleName()
String getTenantId()
WSUser[] getUsers()

11.2.3 deleteUser
In deleteUser, the parameter user has the type WSUser.

To call deleteUser:

209

JasperReports Server Web Services Guide

WSUser user = new WSUser();
user.setUsername("john");
user.setTenantId("organization_1");
binding.deleteUser(user);

There is no return.

11.2.4 findRoles
In findRoles, the parameter criteria has the type WSRoleSearchCriteria and returns type WSRole.

criteria can be a rolename mask, an organization/tenant ID, includeSubOrgs, a list of required users or roles,
and maxRecords. Null values indicate "any."
• The mask has a SQL-like notation. For instance, Ad%, U2_.
• When includeSubOrgs is TRUE, all objects of the specified type are within a search’s scope and result.

Otherwise, only objects in the requested organization (or root if tenantId=null) are searched.
• To limit the number of objects to return, set maxRecords to the desired number. To allow an infinite

number of objects, set maxRecords to 0.

To call findRoles:

WSRoleSearchCriteria searchCriteria = new WSRoleSearchCriteria();
searchCriteria.setRoleName(“ROLE_USER”);
searchCriteria.setTenantId(“organization_1”);
searchCriteria.setMaxRecords(5);
searchCriteria.setIncludeSubOrgs(false);

WSRole[] list = binding.findRoles(searchCriteria);

The return is:

String getUsername()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()
String getRoleName()
String getTenantId()
WSUser[] getUsers()

11.2.5 putRole
In putRole, the parameter role has the type WSRole and returns type WSRole. putRole updates an existing
object; if the specified role does not exist, a new one is created.

Before adding users and roles, note that there is a server-side configuration which specifies the default
roles that a new user can receive. See JasperReports Server Administrator Guide for details.

To call putRole:

210

Chapter 11 SOAP - Web Services for Administration

WSRole role = new WSRole();
role.setRoleName(“ROLE_ANONYMOUS”);
role.setTenantId(null);
WSRole value = binding.putRole(role);

The return is:

String getRoleName()
String getTenantId()
WSUser[] getUsers()
String getUserName()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()

11.2.6 updateRoleName
In updateRoleName, the parameter oldRole has the type WSRole, and the parameter newName has the type
String. They both return type WSRole.

To update a role with a call to oldRole:

WSRole oldRole= new WSRole();
role.setRoleName("ROLE_WS");
role.setTenantId("organization_1");
WSRole value = binding.updateRoleName(oldRole, “ROLE_WEB_SERVICE”);

To rename the role with a call to newName: "ROLE_WEB_SERVICE". The return for an updated role:

String getRoleName()
String getTenantId()
WSUser[] getUsers()
String getUsername()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()

11.2.7 deleteRole
In deleteUser, the parameter user has the type WSUser. In deleteRole, the parameter role has the type
WSRole.

Here are examples of calls to deleteUser and deleteRole:

211

JasperReports Server Web Services Guide

WSRole role = new WSRole();
role.setRoleName("ROLE_WS");
role.setTenantId("organization_1");
binding.deleteRole(role);

There is no return.

11.3 Organizations/Tenants

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

At present, there is no practical difference between organizations and tenants; both kinds of entity are
administered with these tenant operations:
• getTenant. Returns a list of tenants that meet specified criteria.
• getSubTenantList. Returns a list of sub-tenants (units within a tenant).
• putTenant. Returns the named tenant. If the object is not already in the database, the call creates a new

one.
• deleteTenant. Deletes the named tenant.

11.3.1 getTenant
In getTenant, the parameter tenantId has the type String and returns type WSTenant.

To call getTenant:

String tenantId = “organization_1”;

The return is:

String getTenantId()
String getTenantName()
String getTenantAlias()
String getTenantDesc()
String getTenantNote()
String getTenantUri()
String getTenantFolderUri()
String getParentId()

11.3.2 getSubTenantList
In getSubTenantList, the parameter tenantId has the type String and returns type WSTenant[].

To call getSubTenantList:

String tenantId = "organization_1";

The return is:

212

Chapter 11 SOAP - Web Services for Administration

String getTenantId()
String getTenantName()
String getTenantAlias()
String getTenantDesc()
String getTenantNote()
String getTenantUri()
String getTenantFolderUri()
String getParentId()

11.3.3 putTenant
In putTenant, the parameter tenant has the type WSTenant and returns type WSTenant.

To call putTenant. Note that tenantUri and tenantFolderUri are calculated automatically from the tenant’s
tenantId and parentId. As a result, the tenantUri and tenantFolderUri fields of the WSTenant object are
ignored:

WSTenant wsTenant = new WSTenant();
wsTenant.setTenantId("suborg1");
wsTenant.setParentId("organization_1");
wsTenant.setTenantAlias("organization_1");
wsTenant.setTenantName("Sub organization1");
wsTenant.setTenantDesc("Sub organization1 description");
wsTenant.setTenantNote("Sub organization notes");

The return is:

String getTenantId()
String getTenantName()
String getTenantAlias()

String getTenantDesc()
String getTenantNote()
String getTenantUri()
String getTenantFolderUri()
String getParentId()

11.3.4 deleteTenant
In deleteTenant, the parameter tenantId has the type String.

To call deleteTenant.

String tenantId = "organization_1";

There is no return.

11.4 Permissions
The web service for administration of permissions has these operations:
• getPermissionsForObject. Returns a list of permissions for the specified object.

213

JasperReports Server Web Services Guide

• putPermission. Returns the named permission. If the object is not already in the database, the call creates
a new one.

• deletePermission. Deletes the named permission.

11.4.1 getPermissionsForObject
In getPermissionsForObject, the parameter targetURI has the type String and returns type
WSObjectPermission[].

To call getPermissionsForObject:

WSObjectPermission[] objectPermissions = binding.getPermissionsForObject(“repo:/”);

In the return, the permissioned object can be a user or role:

String getUri()
Object getPermissionRecipient()
int getPermissionMask()
String getRoleName()
String getTenantId()
WSUser[] getUsers()
String getUsername()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()

11.4.2 putPermission
In putPermission, the parameter objPerm has the type WSObjectPermission and returns type
WSObjectPermission.

To call putPermission:

WSObjectPermission objectPermission = new WSObjectPermission();
objectPermission.setUri(resourceUri);
objectPermission.setPermissionMask(2);
WSUser wsUser = new WSUser();
wsUser.setUsername("joeuser");
wsUser.setTenantId("organization_1");
objectPermission.setPermissionRecipient(wsUser);
WSObjectPermission value = binding.putPermission(objectPermission);

The setPermissionMask() function accepts the following values. It is not a true mask because bit-wise
combinations of these values are not supported by the server. These values should be treated as constants:

• No access: 0 • Read-delete: 18

• Administer: 1 • Read-write-delete: 30

• Read-only: 2 • Execute-only: 32

214

Chapter 11 SOAP - Web Services for Administration

The return is:

String getUri()
Object getPermissionRecipient()
int getPermissionMask()
String getRoleName()
String getTenantId()
WSUser[] getUsers()
String getUsername()
String getFullName()
String getPassword()
String getEmailAddress()
Boolean getExternallyDefined()
Boolean getEnabled()
Date getPreviousPasswordChangeTime()
String getTenantId()
WSRole[] getRoles()

11.4.3 deletePermission
In deletePermission, the parameter objPerm has the type WSObjectPermission. To call
deletePermission:

WSObjectPermission objectPermission = new WSObjectPermission();
objectPermission.setUri(resourceUri);
objectPermission.setPermissionMask(2);
WSUser wsUser = new WSUser();
wsUser.setUsername("joeuser");
wsUser.setTenantId("organization_1");
objectPermission.setPermissionRecipient(wsUser);
binding.deletePermission(objectPermission);

There is no return.

11.5 Related Files
The web services distribution files include WSDL files as well as client stub classes. The WSDL file for the
administration service is in jasperserver-ws-server-4.0.jar. Client stub files contain return types; they are in
jasperserver-common-ws-4.0.jar. The JasperReports Server Professional and Enterprise implementation of the
services is in ji-ws-server-4.0.jar.

215

JasperReports Server Web Services Guide

216

APPENDIX A RESOURCEDESCRIPTOR API CONSTANTS
The constants that the services require are defined in the following classes:
• com.jaspersoft.jasperserver.api.metadata.xml.domain.impl.ResourceDescriptor
• com.jaspersoft.jasperserver.api.metadata.xml.domain.impl.Argument

The following values are extracted from ResourceDescriptor:

// Resource wsTypes
TYPE_FOLDER = "folder";
TYPE_REPORTUNIT = "reportUnit";
TYPE_DATASOURCE = "datasource";
TYPE_DATASOURCE_JDBC = "jdbc";
TYPE_DATASOURCE_JNDI = "jndi";
TYPE_DATASOURCE_BEAN = "bean";
TYPE_DATASOURCE_VIRTUAL = "virtual";
TYPE_DATASOURCE_CUSTOM = "custom";
TYPE_DATASOURCE_AWS = "aws"; // Amazon Web Services
TYPE_IMAGE = "img";
TYPE_FONT = "font";
TYPE_JRXML = "jrxml";
TYPE_CLASS_JAR = "jar";
TYPE_RESOURCE_BUNDLE = "prop";
TYPE_REFERENCE = "reference";
TYPE_INPUT_CONTROL = "inputControl";
TYPE_DATA_TYPE = "dataType";
TYPE_OLAP_MONDRIAN_CONNECTION = "olapMondrianCon";
TYPE_OLAP_XMLA_CONNECTION = "olapXmlaCon";
TYPE_MONDRIAN_SCHEMA = "olapMondrianSchema";
TYPE_ACCESS_GRANT_SCHEMA = "accessGrantSchema"; // Pro-only
TYPE_UNKNOW = "unknow";
TYPE_LOV = "lov"; // List of values...
TYPE_QUERY = "query";
TYPE_CONTENT_RESOURCE = "contentResource";
TYPE_STYLE_TEMPLATE = "jrtx";
TYPE_XML_FILE = "xml";

// These constants are copied here from DataType for facility
DT_TYPE_TEXT = 1;
DT_TYPE_NUMBER = 2;
DT_TYPE_DATE = 3;

217

JasperReports Server Web Services Guide

...
// ReportUnit resource properties
...RU_CONTROLS_LAYOUT_POPUP_SCREEN = 1;
RU_CONTROLS_LAYOUT_SEPARATE_PAGE = 2;
RU_CONTROLS_LAYOUT_TOP_OF_PAGE = 3;
RU_CONTROLS_LAYOUT_IN_PAGE = 4;
...
// Content resource properties
...
CONTENT_TYPE_PDF = "pdf";
CONTENT_TYPE_HTML = "html";
CONTENT_TYPE_XLS = "xls";
CONTENT_TYPE_RTF = "rtf";
CONTENT_TYPE_CSV = "csv";
CONTENT_TYPE_IMAGE = "img";

The constants in the Argument class are:

// Arguments
MODIFY_REPORTUNIT = "MODIFY_REPORTUNIT_URI";
CREATE_REPORTUNIT = "CREATE_REPORTUNIT_BOOLEAN";
LIST_DATASOURCES = "LIST_DATASOURCES";
IC_GET_QUERY_DATA = "IC_GET_QUERY_DATA";
VALUE_TRUE = "true";
VALUE_FALSE = "false";
RUN_OUTPUT_FORMAT = "RUN_OUTPUT_FORMAT";
RUN_OUTPUT_FORMAT_PDF = "PDF";
RUN_OUTPUT_FORMAT_JRPRINT = "JRPRINT";
RUN_OUTPUT_FORMAT_HTML = "HTML";
RUN_OUTPUT_FORMAT_XLS = "XLS";
RUN_OUTPUT_FORMAT_XML = "XML";
RUN_OUTPUT_FORMAT_CSV = "CSV";
RUN_OUTPUT_FORMAT_RTF = "RTF";
RUN_OUTPUT_IMAGES_URI = "IMAGES_URI";
RUN_OUTPUT_PAGE = "PAGE";
RUN_TRANSFORMER_KEY = "TRANSFORMER_KEY";
RU_REF_URI = "RU_REF_URI";
PARAMS_ARG = "PARAMS_ARG";
LIST_RESOURCES = "LIST_RESOURCES";
RESOURCE_TYPE = "RESOURCE_TYPE";
REPORT_TYPE = "REPORT_TYPE";
START_FROM_DIRECTORY = "START_FROM_DIRECTORY";
NO_RESOURCE_DATA_ATTACHMENT = "NO_ATTACHMENT";
NO_SUBRESOURCE_DATA_ATTACHMENTS = "NO_SUBRESOURCE_ATTACHMENTS";
DESTINATION_URI = "DESTINATION_URI";

218

A

Accept header 24
administration

operations 206
parameters 206
permissions 213
users and roles 208
WSDL 206, 215

API constants 217

C

Content-Type header 24

D

domain
operations 197-198
WSDL 197

E

errors
repository 185

H

HTTP header
Accept 24
Content-Type 24

I

iReport 186

J

JSON 25

M

methods. See operations. 198

O

operations
administration 206
domain 197-198
repository 173
scheduling 192

P

parameters
administration 206
repository 20

passing parameters in runReport operations 183

R

repository
API constants 217
errors 185
operations 173
parameters 20
resources 18

resources 18

S

scheduling
operations 192

INDEX

219

JasperReports Server Web Services Guide

types 189
WSDL 189

W

web services
administration 205, 215
domain 197, 203
repository 171, 187
scheduling 189, 195

Web Services Description Language. See WSDL. 206
WSDL

administration 206, 215
domain 197
scheduling 189

220

	Chapter 1 Introduction to Web Services
	1.1 REST Web Services Overview
	1.2 REST Authentication
	1.2.1 Login Encryption
	1.2.2 Login Service

	1.3 REST Server Information
	1.4 SOAP Web Services Overview
	1.5 SOAP Authentication
	1.6 Syntax of resourceDescriptor
	1.6.1 Overview
	1.6.2 wsType Attribute
	1.6.3 isNew Attribute
	1.6.4 Resource Descriptor Parameters
	1.6.5 Examples of resourceDescriptor

	Chapter 2 REST v2 - Repository Services
	2.1 The v2/resources Service
	2.1.1 V2 Resource Descriptors
	2.1.2 V2 Resource Descriptor Types
	2.1.3 Searching the Repository
	2.1.4 Paginating Search Results
	2.1.5 Viewing Resource Details
	2.1.6 Downloading File Resources
	2.1.7 Creating a Resource
	2.1.8 Modifying a Resource
	2.1.9 Copying a Resource
	2.1.10 Moving a Resource
	2.1.11 Uploading File Resources
	2.1.12 Deleting Resources

	2.2 The v2/domains/metadata Service
	2.2.1 Working with Domain Schemas
	2.2.2 Accessing Domain Bundles and Security Files

	2.3 The v2/permissions Service
	2.3.1 Viewing Multiple Permissions
	2.3.2 Viewing a Single Permission
	2.3.3 Setting Multiple Permissions
	2.3.4 Setting a Single Permission
	2.3.5 Deleting Permissions in Bulk
	2.3.6 Deleting a Single Permission

	2.4 The v2/export Service
	2.4.1 Checking the Export State
	2.4.2 Fetching the Export Output

	2.5 The v2/import Service

	Chapter 3 REST v2 - Report Services
	3.1 The v2/reports Service
	3.1.1 Running a Report
	3.1.2 Finding Running Reports
	3.1.3 Terminate Running Report

	3.2 The v2/reportExecutions Service
	3.2.1 Running a Report Asynchronously
	3.2.2 Polling Report Execution
	3.2.3 Requesting Report Execution Details
	3.2.4 Requesting Report Output
	3.2.5 Exporting a Report Asynchronously
	3.2.6 Modifying Report Parameters
	3.2.7 Polling Export Execution
	3.2.8 Finding Running Reports and Jobs
	3.2.9 Stopping Running Reports and Jobs

	3.3 The v2/inputControls Service
	3.3.1 Listing Input Control Structure
	3.3.2 Listing Input Control Values
	3.3.3 Setting Input Control Values

	3.4 The v2/options Service
	3.4.1 Listing Report Options
	3.4.2 Creating Report Options
	3.4.3 Updating Report Options
	3.4.4 Deleting Report Options

	3.5 The v2/jobs Service
	3.5.1 Listing Report Jobs
	3.5.2 Viewing a Job Definition
	3.5.3 Extended Job Search
	3.5.4 Scheduling a Report
	3.5.5 Viewing Job Status
	3.5.6 Editing a Job Definition
	3.5.7 Updating Jobs in Bulk
	3.5.8 Pausing Jobs
	3.5.9 Resuming Jobs
	3.5.10 Restarting Failed Jobs
	3.5.11 Specifying FTP Output
	3.5.12 Calendar Exclusion for the Scheduler

	3.6 The v2/queryExecutor Service
	3.7 The v2/caches Service

	Chapter 4 REST v2 - Administration Services
	4.1 The v2/organizations Service
	4.1.1 Searching for Organizations
	4.1.2 Viewing an Organization
	4.1.3 Creating an Organization
	4.1.4 Modifying Organization Properties
	4.1.5 Setting the Theme of an Organization
	4.1.6 Deleting an Organization

	4.2 The v2/users Service
	4.2.1 Searching for Users
	4.2.2 Viewing a User
	4.2.3 Creating a User
	4.2.4 Modifying User Properties
	4.2.5 Deleting a User

	4.3 The v2/attributes Service
	4.3.1 Viewing User Attributes
	4.3.2 Setting User Attributes
	4.3.3 Deleting User Attributes

	4.4 The v2/roles Service
	4.4.1 Searching for Roles
	4.4.2 Viewing a Role
	4.4.3 Creating a Role
	4.4.4 Modifying a Role
	4.4.5 Setting Role Membership
	4.4.6 Deleting a Role

	Chapter 5 REST v1 - Repository Services
	5.1 The resources Service
	5.2 The resource Service
	5.2.1 Requesting the Contents of a JasperReport
	5.2.2 Requesting the Contents of a File Resource
	5.2.3 Requesting the Values of a Query-Based Input Control
	5.2.4 Creating a Resource
	5.2.5 Setting the Temporary Upload Directory
	5.2.6 Modifying a Resource
	5.2.7 Copying or Moving a Resource
	5.2.8 Deleting a Resource

	5.3 Working with Dashboards
	5.4 Working with Virtual Data Sources
	5.5 Working with Domains
	5.6 The permission Service
	5.6.1 Viewing Permissions
	5.6.2 Setting Permissions

	Chapter 6 REST v1 - Report Services
	6.1 The report Service
	6.1.1 Running a Report
	6.1.2 Downloading Report Output
	6.1.3 Regenerating Report Output

	6.2 The jobsummary Service
	6.3 The job Service
	6.3.1 Viewing a Job Definition
	6.3.2 Scheduling a Report
	6.3.3 Editing a Job Definition
	6.3.4 Deleting a Job Definition

	Chapter 7 REST v1 - Administration Services
	7.1 The organization Service
	7.1.1 Viewing an Organization
	7.1.2 Creating an Organization
	7.1.3 Modifying Organization Properties
	7.1.4 Deleting an Organization

	7.2 The user Service
	7.2.1 Creating a User
	7.2.2 Editing a User
	7.2.3 Deleting a User

	7.3 The attribute Service
	7.4 The role Service
	7.4.1 Creating a New Role
	7.4.2 Editing a Role
	7.4.3 Deleting a Role

	Chapter 8 SOAP - Repository Web Service
	8.1 Request and Operation Result
	8.2 List Operation
	8.3 Get Operation
	8.4 Put Operation
	8.5 Delete Operation
	8.6 Move Operation
	8.7 Copy Operation
	8.8 runReport Operation
	8.8.1 Report Output
	8.8.2 Report Locales

	8.9 Errors
	8.10 Implementation Suggestions

	Chapter 9 SOAP - Report Scheduling Web Service
	9.1 Types Defined in the WSDL
	9.2 Operations in the Scheduling Service
	9.2.1 Operation Descriptions
	9.2.2 Example Request and Operation Result

	9.3 Java Client Classes

	Chapter 10 SOAP - Domain Web Service
	10.1 Types Defined in the WSDL
	10.2 Operations in the Domain Service
	10.2.1 The getDomainMetaData Operation
	10.2.2 The executeDomainQuery Operation
	10.2.3 Java Client Classes

	Chapter 11 SOAP - Web Services for Administration
	11.1 Types Defined in the WSDL
	11.2 Users and Roles
	11.2.1 findUsers
	11.2.2 putUser
	11.2.3 deleteUser
	11.2.4 findRoles
	11.2.5 putRole
	11.2.6 updateRoleName
	11.2.7 deleteRole

	11.3 Organizations/Tenants
	11.3.1 getTenant
	11.3.2 getSubTenantList
	11.3.3 putTenant
	11.3.4 deleteTenant

	11.4 Permissions
	11.4.1 getPermissionsForObject
	11.4.2 putPermission
	11.4.3 deletePermission

	11.5 Related Files

	Appendix A ResourceDescriptor API Constants
	Index

