
Copyright © 2005-2024. Cloud Software Group, Inc. All Rights Reserved.

JasperReports® IO At-Scale
User Guide
Version 4.0.0 | January 2024

JasperReports® IO At-Scale User Guide

2 | Contents

Contents
Contents 2

Introduction 4

Building Docker Images 5
Jaspersoft IO At-Scale Modules 5

Configuring the Modules 6
Installing the License File 6

Using the Standalone Repository 6

Connecting to a JasperReports Server Repository 7

Setting JasperReports Properties 8

Configuring Logging 9

Setting Concurrent Threads 10

Using a Local Repository 11

Using a Redis Cluster 12
Deploying a Redis Cluster 12

Configuring JRIO Modules for a Redis Cluster 14

Configuring JRIO Helm Chart for a Redis Cluster 14

Building Docker Images 15

Configuring a Cluster in Kubernetes 17
Configuring the Helm Chart 17

Configuring Services 22

Configuring Scalability 23

Deploying a Cluster in AWS EKS 25
Setting Up AWS EKS 25
Installing the AWS CLI 25

Configuring AWS Credentials 26

JasperReports® IO At-Scale User Guide

3 | Contents

Installing kubectl 26

Creating a Cluster Role 26

Creating a Virtual Private Cloud 27

Creating the Cluster 27

Updating kubectl 28

Create Compute 29

Enabling Autoscaling 30
Installing the Cluster Autoscaler 30

Deploying the Kubernetes Metrics Server 31

Setting up AWS ECR 31

Deploying the Cluster 33

Deploying JasperReports Server 35

Deploying Your Database 36

Cloud Repositories for Jaspersoft IO At-Scale 37
OAuth2 Repositories 37

Accessing Cloud Repositories 38

Jaspersoft Documentation and Support Services 39

Legal and Third-Party Notices 41

JasperReports® IO At-Scale User Guide

4 | Introduction

Introduction
JasperReports IO (JRIO) is an HTTP-based reporting service that provides an interface to
the JasperReports Library reporting engine through the use of a REST API and a JavaScript
API. The REST API provides services for running, exporting, and interacting with reports
while the JavaScript API allows you to embed reports and their input controls into your
web pages and web applications using style sheets (CSS) to control the look and feel.
Report templates, data sources, and all report resources are stored in a local repository or
in an Amazon Web Services (AWS) S3 bucket and you have the option of creating new
report templates using Jaspersoft Studio.

Jaspersoft IO At-Scale is a container-based deployment of JasperReports IO for enterprise
applications. JRIO At-Scale allows you to scale the JRIO service in various ways because
specialized sub-services run in separate containers but work together to deliver a single,
embeddable reporting service. JRIO At-Scale can also be used as a super-scalable reporting
engine for JasperReports Server that is transparent to end users. In this configuration, the
reports displayed in the server are processed by JRIO At-Scale.

For testing and small-scale deployments, you can create a monolithic web application with
all sub-services hosted together. For large-scale deployments, services can run in separate
containers and are able to scale automatically for high performance. You can deploy a
cluster using Kubernetes or Amazon AWS EKS (Amazon Elastic Kubernetes Service) to scale
up to thousands of reports per hour and thousands of pages per report.

JasperReports® IO At-Scale User Guide

5 | Building Docker Images

Building Docker Images
Jaspersoft® IO At-Scale runs its services in separate Docker containers that work together in
a Kubernetes cluster. Before deployment, you need to configure the various modules, for
example to install your license and define the location of your repository, and then build
the final Docker images.

This chapter includes the following sections:

• Jaspersoft IO At-Scale Modules

• Configuring the Modules

• Using a Local Repository

• Building Docker Images

Jaspersoft IO At-Scale Modules
Jaspersoft IO At-Scale contains several modules, also called pods, described in the
following table. Each of these modules becomes a separate Docker image:

Module Description

jrio-client This module contains a sample HTML application with documentation. The
jrio-client module is also used for sample viz.js implementation that is
used in an embedded report viewer.

jrio-manager This is the main manager or orchestrator module that also contains the
license file. There is always exactly one instance of this module in the
cluster.

jrio-reporting This is the main reporting application that generates reports from JRXML,
but the reports are generated as serialized Java objects to be stored in the
Redis cache module.

JasperReports® IO At-Scale User Guide

6 | Building Docker Images

Module Description

jrio-rest This module is responsible for inbound and outbound communication from
the cluster, such that all tasks are input and output through this module.
Its k8s service should be exposed.

redis This module is responsible for caching and queuing all report creation
tasks in a Redis queue. The jrio-reporting and jrio-rest pods monitor the
Redis queue for new tasks requests or task results. The jrio-manager
module also checks report execution status which is stored in the Redis
queue.

jrio-export The module that will generate the requested output format from the Java
objects stored in the cache of the redis module. jrio-export stores all
generated outputs back into the Redis cache.

Configuring the Modules
Before you can build Docker images to deploy the modules, you must configure them to
add the license file and specify a repository to store your reports. Optionally, you can also
enable logging and set concurrent thread limits.

Installing the License File
You must purchase a license from Jaspersoft to run Jaspersoft IO At-Scale. Once you
recieve the license file, save a copy in the following folder:

jrio-manager-docker/jrio/classes

For more information about the license file, contact your Jaspersoft support
representative.

Using the Standalone Repository
The jrio-client module only contains a sample application with links to the reports. These
reports are stored in the sample repositories. Each module (jrio-client, jrio-reporting, jrio-

JasperReports® IO At-Scale User Guide

7 | Building Docker Images

rest) can access the reports using their local file system.

However, the sample application is not a high-performance repository and is deployed
statically in the jrio-client pod. Jaspersoft recommends using a JasperReports Server
repository, as described in the next section.

To make your reports appear in the standalone repository of the sample application, add
the files in the following folders:

jrio-reporting-docker/jrio-repository/samples

jrio-export-docker/jrio-repository/samples

jrio-rest-docker/jrio-repository/samples

The standalone repository is identical to the file-based repository in JasperReports IO
Professional. For more information about its file structure, see the JasperReports IO
Repository section of the Managing JasperReports IO chapter in the JasperReports IO Pro
User Guide.

Connecting to a JasperReports Server Repository
In a production environment, Jaspersoft recommends using Jaspersoft IO At-Scale with a
JasperReports Server instance for maximum throughput and flexibility. In this case, users
create and access reports in the JasperReports Server repository, and JRIO At-Scale
becomes the scalable, high-performance reporting engine for the server.

When connecting to JasperReports Server, you must specify a URL (IP address or
hostname) that is accessible from inside the Jaspersoft IO At-Scale cluster. If you plan to
use JasperReports Server on AWS, you can specify the static IP or loadbalancer with
hostname that is attached to that server instance. Be aware that you should create your
Virtual Private Cloud (VPC) ahead of time, as well as your JasperReports Server instance so
that the IP address is already available for the next steps. For more information, see
Deploying JasperReports Server.

The repository URL is usually set in the Helm chart (values.yaml), as described in Configuring the
Helm Chart. The Helm chart lets you update the repository URL dynamically because its value
takes precedence. However, setting this value in the module configuration as described below
provides a hardcoded default value.

Optional

1. Specify the server URL in the following three modules configuration files:

JasperReports® IO At-Scale User Guide

8 | Building Docker Images

Files jrio-reporting-docker/jrio/applicationContext-jrs.xml
jrio-export-docker/jrio/applicationContext-jrs.xml
jrio-rest-docker/jrio/WEB-INF/applicationContext-jrs.xml

Bean id="serverConfiguration"
class="com.jaspersoft.jrio.common.repository.jrs.ServerConfiguration"

Property serverURL

Example <property name="serverURL" value="http://example.com:8080/jasperserver-pro"/>

2. By default, Jaspersoft IO At-Scale includes the standalone repository in the jrio-
export, jrio-rest, and jrio-reporting modules. The sample repository in each module
is accessible. For more information, see Using a Local Repository. Deploying the
Jaspersoft IO At-Scale with a sample repository in each module will not impact the
performance. If you want to disable these file repositories, open each of the
following files and comment out all of the listed beans:

Files jrio-reporting-docker/jrio/applicationContext-repository.xml
jrio-export-docker/jrio/applicationContext-repository.xml
jrio-rest-docker/jrio/WEB-INF/applicationContext-repository.xml

Beans com.jaspersoft.jrio.common.repository.FileSystemRepository
com.jaspersoft.jrio.common.repository.FileSystemPersistenceServiceFactory

Setting JasperReports Properties
JasperReports properties are the configuration settings for the JasperReports Library that
is the reporting engine for Jaspersoft IO At-Scale. They affect the reporting and exporting
modules to determine many aspects of report generation and output.

JasperReports properties are usually set in the Helm chart (values.yaml), as described in
Configuring the Helm Chart. The Helm chart lets you update the properties dynamically because
its values takes precedence. However, setting this value in the module configuration as described
below provides a hardcoded default value.

Optional

To set JasperReports properties, add them to the following files:

jrio-reporting jrio-reporting-docker/jrio/classes/jasperreports.properties

JasperReports® IO At-Scale User Guide

9 | Building Docker Images

module jrio-reporting-docker/jrio/classes/jasperreports_extension.properties

jrio-export module jrio-export-docker/jrio/classes/jasperreports.properties
jrio-export-docker/jrio/classes/jasperreports_extension.properties

Configuring Logging
By default, logging is enabled in the jrio-manager and jrio-reporting modules. Jaspersoft
does not recommend changing the logging levels because the logs are used for
troubleshooting. You can monitor these logs and use the Kubernetes Logging API to track
events inside the cluster.

The logging levels are defined as follows

Module jrio-manager

File jrio-manager-docker/jrio/classes/log4j2.xml

Loggers <Logger name="com.jaspersoft.jrio.manager.redis.RedisLicensePublisher"
level="INFO"/>
<Logger name="com.jaspersoft.jrio.manager.reporting.ReportingQueueManager"
level="DEBUG"/>

Module jrio-reporting

File jrio-reporting-docker/jrio/classes/log4j2.xml

Logger <Logger name="com.jaspersoft.jrio.reporting.execution.ReportExecutionPoll"
level="DEBUG"/>

JasperReports® IO At-Scale User Guide

10 | Building Docker Images

Module jrio-rest

File jrio-rest-docker\jrio\WEB-INF\classes\log4j2.xml

Logger None by default

Setting Concurrent Threads
The jrio-reporting and jrio-export modules are the workhorses of a Jaspersoft IO At-Scale
cluster, usually deployed as multiple pods (module instances) to one or more nodes
(physical or virtual machines). Each pod can also specify how many threads to run
concurrently. This value depends on your performance needs, and it requires fine tuning
based on service level requirements, user expectations, peak load, and CPUs available on
each node.

The concurrent threads are usually set in the Helm chart (values.yaml), as described in
Configuring the Helm Chart. The Helm chart lets you update the properties dynamically because
its values takes precedence. However, setting threads in the module configuration as described
below provides a hardcoded default value.

To specify the default number of concurrent threads in each reporting pod

File jrio-reporting-docker/jrio/applicationContext-reporting.xml

Bean reportExecutionPoll

Property reportExecutionThreads

To specify the default number of concurrent threads in each export module

File jrio-export-docker/jrio/applicationContext-export.xml

Bean com.jaspersoft.jrio.export.executor.ReportExportExecutor

Property exportThreads

JasperReports® IO At-Scale User Guide

11 | Building Docker Images

Using a Local Repository
Typically, Jaspersoft IO At-Scale cluster accesses the repository in a JasperReports Server
instance, as described in Connecting to a JasperReports Server Repository. As an option for
high performance needs, you can also use a local repository in every deployed jrio-
reporting pod, jrio-export pod, and jrio-rest pod. By using a file-based repository in the
docker images, JRIO can process some requests locally, which is about 20% faster than
using the server's repository.

Several repository structures are possible in Jaspersoft IO At-Scale, the same as with
JasperReports IO Professional:

• This section describes how to create a repository of static files in the docker images.
The files are static because they are copied and deployed in each pod without any
mechanism to update the contents. To change the contents of the local repository,
you must rebuild the docker images and redeploy every pod.

• You can have both a local repository and the JasperReports Server repository that
are used at the same time. In this case, all requests that are proxied from the server
to JRIO will use the server's repository, and all requests that you send to the JRIO
REST service will resolve in the local repository.

• Jaspersoft IO At-Scale can also use an S3 repository, as described in the AWS S3
Bucket Repository section of the Managing JasperReports IO chapter in the
JasperReports IO Pro User Guide. When using an S3 bucket, you can modify the
contents of the repository without rebuilding the docker images.

• You can have several file repositories that will be accessed as one, as described in
the Configuring the Web Application Server to Use Multiple Repositories section of the
Managing JasperReports IO chapter in the JasperReports IO Pro User Guide.

The following procedure describes how to create a local, file-based repository copy in every
docker pod.

To build the Docker images

1. The file format of the file-based repository is described in the JasperReports IO
Repository section of the Managing JasperReports IO chapter in the JasperReports
IO Pro User Guide. Once you have all your resource files ready, copy them to the
following folders:

• jrio-reporting-docker/jrio-repository/samples

• jrio-export-docker/jrio-repository/samples

JasperReports® IO At-Scale User Guide

12 | Building Docker Images

• jrio-rest-docker/jrio-repository/samples

When building the docker images, files in the above locations are copied to the following
locations:

• jrio-reporting > /usr/local/jrio

• jrio-export > /usr/local/jrio

• jrio-rest > /var/lib/jetty/webapps/jrio/repository

2. Finish any other module configuration as described in Configuring the Modules, then
build the Docker images in Building Docker Images.

Using a Redis Cluster
By default, Jaspersoft IO At-Scale uses the redis module to deploy a single redis pod. Redis
is a queue where JRIO stores report requests and report output. In applications with high
demand, the Redis queue can become a bottleneck for requests. Therefore, an option for
high performance needs is to deploy Redis as a separate cluster and configure JRIO to use
it instead of its own redis pod.

To implement a Redis cluster, first you need to deploy and configure the cluster itself. Then
you need to configure the Jaspersoft IO At-Scale modules before building the Docker
images. Finally, you need to configure the JRIO Helm Chart before deploying the JRIO
cluster.

Deploying a Redis Cluster
The Redis cluster is separate from the Jaspersoft IO At-Scale product: you must obtain and
install Redis from a third-party source. Jaspersoft has tested Jaspersoft IO At-Scale with the
Redis cluster and Helm chart available from Bitnami, specifically the Redis 6.0.7-debian-10-
r0 image, and the examples in this section are based on their product:

https://github.com/bitnami/charts/tree/master/bitnami/redis-cluster
https://bitnami.com/stack/redis-cluster/helm

After downloading the Redis cluster, download the values-production.yaml file from the
Bitnami github repo:

https://github.com/bitnami/charts/blob/master/bitnami/redis-cluster/values-
production.yaml

https://github.com/bitnami/charts/tree/master/bitnami/redis-cluster
https://bitnami.com/stack/redis-cluster/helm
https://github.com/bitnami/charts/blob/master/bitnami/redis-cluster/values-production.yaml
https://github.com/bitnami/charts/blob/master/bitnami/redis-cluster/values-production.yaml

JasperReports® IO At-Scale User Guide

13 | Building Docker Images

Edit the values-production.yaml file as follows:

Property Description

cluster.nodes The number of nodes in the Redis cluster. Jaspersoft has successfully
tested with the default of 6 nodes.

cluster.replicas The number of Redis replicas, tested with the default of 1.

usePassword Set to true.

password Set your password for accessing Redis from Jaspersoft IO At-Scale, for
example mypassword.

Deploy the Bitnami Redis cluster with the additional values-production.yaml file using the
following command:

helm install redis bitnami/redis-cluster --values values-production.yaml

The cluster name is right after the word install in the helm command. In this example, the
cluster name is redis. The cluster name is used in the redis service name in the JRIO
modules configuration, in the format <cluster-name>-redis-cluster. Therefore, the service
name for this cluster is redis-redis-cluster.

If you need to delete the Redis cluster, use the following command where redis is the
<cluster-name>:

helm delete redis

However, Helm doesn't delete redis volumes, so before you create a new Redis cluster,
check the persistent volume claims (pvc) and delete them individually as shown in the
following example. There is one volume for each node, so 6 in our example:

redis_ha> kubectl get pvc | grep redis
redis-data-redis-redis-cluster-0 Bound pvc-e715109e-e0df-4a80-a38b-3449a2bd142a 8Gi RWO gp2 2d17h
redis-data-redis-redis-cluster-1 Bound pvc-0f9a9fda-b3d0-46c0-b2c1-13f202637212 8Gi RWO gp2 2d17h
redis-data-redis-redis-cluster-2 Bound pvc-53121613-929e-467e-b607-b0bec6ee75e4 8Gi RWO gp2 2d17h
redis-data-redis-redis-cluster-3 Bound pvc-963d458d-fffa-4bca-bc5c-f4cb21f39373 8Gi RWO gp2 2d17h
redis-data-redis-redis-cluster-4 Bound pvc-84bc2600-48c7-4eb5-93ef-08b02c01a74b 8Gi RWO gp2 2d17h
redis-data-redis-redis-cluster-5 Bound pvc-17db9ab9-44af-4d69-b422-ba9c0da507a1 8Gi RWO gp2 2d17h

JasperReports® IO At-Scale User Guide

14 | Building Docker Images

redis_ha> kubectl delete pvc redis-data-redis-redis-cluster-0 redis-data-redis-redis-cluster-1
redis-data-redis-redis-cluster-2 redis-data-redis-redis-cluster-3
redis-data-redis-redis-cluster-4 redis-data-redis-redis-cluster-5
persistentvolumeclaim "redis-data-redis-redis-cluster-0" deleted
persistentvolumeclaim "redis-data-redis-redis-cluster-1" deleted
persistentvolumeclaim "redis-data-redis-redis-cluster-2" deleted
persistentvolumeclaim "redis-data-redis-redis-cluster-3" deleted
persistentvolumeclaim "redis-data-redis-redis-cluster-4" deleted
persistentvolumeclaim "redis-data-redis-redis-cluster-5" deleted

Configuring JRIO Modules for a Redis Cluster
Before building the Docker images, you have to configure the Jaspersoft IO At-Scale
modules to use your Redis cluster instead of the built-in Redis module. Edit the following
files:

jrio-export-docker/jrio/redis-config.yaml
jrio-manager-docker/jrio/redis-config.yaml
jrio-reporting-docker/jrio/redis-config.yaml
jrio-rest-docker/jrio/WEB-INF/redis-config.yaml

Change the configuration as follows, using the Redis service name and password set in the
previous examples:

clusterServersConfig:
password: "mypassword"
nodeAddresses:
- "redis://redis-redis-cluster:6379"
codec: !<org.redisson.codec.SerializationCodec> {}

The Redis service name format is <cluster-name>-redis-cluster.

Now you can build the JRIO Docker images and put them into the Docker registry, as
described in Building Docker Images.

Configuring JRIO Helm Chart for a Redis Cluster
Before deploying your Jaspersoft IO At-Scale cluster, you must configure its Helm chart to
use the Redis cluster. Make sure the jrio-at-scale-3.0.0/k8s/helm/values.yaml file uses the
new images built after updating with the Redis cluster service.

Delete the following files that are no longer needed:

JasperReports® IO At-Scale User Guide

15 | Building Docker Images

jrio-at-scale-3.0.0/k8s/helm/templates/redis-deployment.yaml
jrio-at-scale-3.0.0/k8s/helm/templates/redis-service.yaml

Then edit the following files:

jrio-at-scale-3.0.0/k8s/helm/templates/jrio-manager-deployment.yaml
jrio-at-scale-3.0.0/k8s/helm/templates/jrio-reporting-deployment.yaml
jrio-at-scale-3.0.0/k8s/helm/templates/jrio-export-deployment.yaml
jrio-at-scale-3.0.0/k8s/helm/templates/jrio-rest-deployment.yaml

In each of them, replace the Redis connection and initialization script with the following:

initContainers:
- name: redis-connection
image: alpine:3.11.6
command: ['sh', '-c', "until nc -vz redis-redis-cluster 6379; do echo waiting for redis; sleep

2; done; echo connected to redis"]

Now you can proceed with Configuring the Helm Chart and Deploying a Cluster in AWS
EKS.

Building Docker Images
After all of your configurations and customizations have been made, you can build Docker
images for the modules. Go to the folder where jrio-manager-docker and the other
modules are located and run the following commands:

1. If you have not already done so, install the Docker command-line app to run Docker
commands. You can download the Docker app for Mac, Windows, and Linux from
https://docs.docker.com/get-docker/.

2. If you plan to use minikube and not the remote Docker registry, before building the
images you must poxy all docker commands to the local minikube docker registry
with the following:

eval $(minikube docker-env)

3. Build the docker image for each of the modules. In the following commands, X.X
represents a docker image tag according to your own naming scheme, for example
jrio-reporting:3.0 or jrio-reporting:production2:

https://docs.docker.com/get-docker/

JasperReports® IO At-Scale User Guide

16 | Building Docker Images

docker build -t jrio-reporting:X.X ./jrio-reporting-docker
docker build -t jrio-export:X.X ./jrio-export-docker
docker build -t jrio-rest:X.X ./jrio-rest-docker
docker build -t jrio-manager:X.X ./jrio-manager-docker
docker build -t jrio-client:X.X ./jrio-client-docker

4. Verify that all images were built and stored in the local repo:

docker images | grep jrio

When all images have been built, follow the deployment procedures in the next chapter.

JasperReports® IO At-Scale User Guide

17 | Configuring a Cluster in Kubernetes

Configuring a Cluster in Kubernetes
This chapter explains how to configure and optimize a Jaspersoft IO At-Scale kubernetes
cluster.

A kubernetes cluster is managed by the Helm chart that is shipped as part of the enterprise
package. The Helm chart is located in the following folder:

Folder jrio-at-scale-3.0.0/k8s/helm

Contents values.yaml The Helm chart that contains all the properties required for
Jaspersoft IO At-Scale pods or services.

templates Subfolder containing files for kubectl commands. These can
only be installed through Helm, because the files use variables
from the values.yaml file.

This chapter includes the following sections:

• Configuring the Helm Chart

• Configuring Services

• Configuring Scalability

Configuring the Helm Chart
Before deploying the docker images to Kubernetes, you must configure the cluster through
the Helm chart located in the values.yaml file. There is a section in the file for each
module, with settings that are specific to that module's needs. The following table
describes the most common properties in the Helm chart.

Property Description

replicas Must be set to 1 when using the Kubernetes auto-scalability

JasperReports® IO At-Scale User Guide

18 | Configuring a Cluster in Kubernetes

Property Description

feature, because that will create its own replica sets for
deployments and your default replica set won't be used anyway.
For more information, see Configuring Scalability.

dockerImage URI and path of the image in the Docker image repository. In
these examples, it's an AWS Docker image registry (AWS ECR or
Amazon Elastic Container Registry).

dockerTag The tag for the image in the Docker image repository.

memoryRequest Minimum amount of memory that the pod needs to run
properly. This much memory should be reserved for the pod,
even if it may not use it all at first.

The Mi unit is Mebibytes, which for computer memory is
synonymous with megabytes (1 MiB = 2^20 bytes = 1048576
bytes). The Gi unit is also supported for Gibibytes, equivalent to
gigabytes.

memoryLimit Maximum amount of memory that can be allocated to the pod.
The pod will not be able to use more than this amount. See the
explanation of Mi units above.

cpuRequest Minimum amount of CPU that the pod needs to run properly.
This much CPU should be reserved for the pod, even if it may
not use it all at first.

The unit m is milliCPU, or thousandths of a CPU. Therefore,
1000m is equivalent to one whole CPU, and 500m is half a CPU.
1000m is also equivalent to 1 virtual CPU (AWS vCPU) or 1
virtual core (Azure vCore or Google core).

cpuLimit Maximum amount of CPU that can be allocated to the pod. The
pod will not be able to use more than this amount. See the
explanation of units above.

javaOptions JVM options settings for each pod in a specific deployment. The
recommendation is to leave some buffer so the JVM won't take

JasperReports® IO At-Scale User Guide

19 | Configuring a Cluster in Kubernetes

Property Description

everything up to what is set in memoryLimit. In particular, the
jrio-Export pods come with preinstalled chromium driver, which
is used to export HTML/Fusion charts. Each chart report export
task inside one pod will start multiple chromiums inside the
pod.

terminationWaitSeconds This timeout allows the pod to finish all its tasks when
kubernetes desides to scale down the cluster and terminates the
pod. For more information, see the Kubernetes documentation.

config Configuration properties that are passed to the pod, especially
any jasperReportsProperties for the jrio-reporting and jrio-export
pods.

The following examples of the Helm chart for each pod assume that the Docker images are
deployed on AWS EKS (Amazon Elastic Kubernetes Service).

• The jrio-client module is optional, and usually only included for demonstration
purposes.

###############################
jrio-client config
###############################
jrioClient:
replicas: 1
dockerImage: 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-client
dockerTag: my-example-1.0

containerPort: 8080
servicePort: 8080

• The jrio-manager pod has memory and cpu settings, as well as options for its JVM
(Java Virtual Machine).

#########################
jrio-manager config
#########################
jrioManager:
dockerImage: 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-manager
dockerTag: my-example-1.0
memoryRequest: 384Mi
memoryLimit: 1536Mi
cpuRequest: 200m
cpuLimit: 1000m
javaOptions: "-Xms128m -Xmx1500m"

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#hook-handler-execution

JasperReports® IO At-Scale User Guide

20 | Configuring a Cluster in Kubernetes

• In addition to resource limits and JVM options, the jrio-reporting pod has a timeout
setting and a thread setting. You can also specify the jasperReportsProperties
property and provide a list of JasperReports Library property names and values to
be used when generating reports.

###########################
jrio-reporting config
###########################
jrioReporting:
replicas: 1
dockerImage: 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-reporting
dockerTag: my-example-1.0
memoryRequest: 512Mi
memoryLimit: 2048Mi
cpuRequest: 500m
cpuLimit: 1000m
javaOptions: "-Xms128m -Xmx1536m"
terminationWaitSeconds: 600
config:
reportExecutionThreads: 4
jasperReportsProperties: |

net.sf.jasperreports.chrome.argument.no-sandbox=true
#net.sf.jasperreports.second.property.example=abc

• In addition to resource limits and JVM options, the jrio-export pod also has a
timeout setting and a thread setting. You can also specify the
jasperReportsProperties property and provide a list of JasperReports Library
property names and values to be used when exporting reports.

###########################
jrio-export config
###########################
jrioExport:
replicas: 1
dockerImage: 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-export
dockerTag: my-example-1.0
memoryRequest: 512Mi
memoryLimit: 2048Mi
cpuRequest: 500m
cpuLimit: 1000m
javaOptions: "-Xms128m -Xmx1536m"
terminationWaitSeconds: 900
config:
exportExecutionThreads: 4

jasperReportsProperties: |
net.sf.jasperreports.chrome.argument.no-sandbox=true
#net.sf.jasperreports.second.property.example=abc

• The jrio-rest pod has properties for resoure limits, JVM options and a timeout. If you
are not using the standard 8080 port, specify it here as well.

JasperReports® IO At-Scale User Guide

21 | Configuring a Cluster in Kubernetes

######################
jrio-rest config
######################
jrioRest:
replicas: 1
dockerImage: 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-rest
dockerTag: my-example-1.0
memoryRequest: 512Mi
memoryLimit: 2048Mi
cpuRequest: 500m
cpuLimit: 1000m
javaOptions: "-Xms128m -Xmx1536m"
terminationWaitSeconds: 900

containerPort: 8080
servicePort: 8080

• The redis pod for the Redis queue only needs the port specified if you are not using
the default (6379).

##################
redis config
##################
redis:
replicas: 1
dockerImage: redis
dockerTag: 1-example

containerPort: 6379
servicePort: 6379

• This setting identifies the URL of the JasperReports Server instance hosting the
repository you want to use for reports and data adapters. This value overrides any
repository URL defined in the docker images.

################
JRS config
################
repository:
jasperReportsServer:
url: "http://example.com:8080/jasperserver-pro"

If you deploy JasperReports Server in the cloud, you must launch it first so its URL is
available to you now. If you have a Private setup for AWS EKS (Elastic Kubernetes Service),
then the server must be placed into the same virtual private cloud (VPC) as AWS EKS. If you
have a public setup, it's not required but it is recommended to do so as well.

Jaspersoft recommended to use a static IP address for the JasperReports Server EC2
instance, so you won't have to rebuild JRIO images and update the repository URL in this
file. For a server in a clustered setup, you should use the load balancer hostname.

In the following example, the server is running on AWS (Amazon Web Services). You do not
need to specify the port if it uses the default port 80.

JasperReports® IO At-Scale User Guide

22 | Configuring a Cluster in Kubernetes

url: "http://jrs-instance-lb-002.us-east-1.elb.amazonaws.com/jasperserver-pro"

Minikube on Docker VM
If you deploy on Minikube using the Docker VM, you must specify the following
JasperReports Library property in the jrioReporting and jrioExport sections.

jasperReportsProperties:
net.sf.jasperreports.chrome.argument.no-sandbox=true

This property is needed because of a known issue with chromedriver on the Docker VM.
This property is not needed for Minikube on a virtual box or other virtual machines, nor for
actual Kubernetes clusters, for example when deployed on AWS EKS.

Configuring Services
Services that are exposed by your cluster must be defined as type LoadBalancer when
deployed in the cloud, that is when you have multiple nodes that scale up and down. When
deployed in local setups such as Minikube or when you know the IP address of the node,
exposed services must be defined as NodePort.

For Jaspersoft IO At-Scale, there is one service that is potentially exposed in different
situations:

• jrio-rest: Required for a production deployment when using a JasperReports Server
repository, because all communication is performed through the REST API.

To expose the jrio-rest module in a production cluster, update the service configuration file
jrio-at-scale-3.0.0/k8s/helm/templates/jrio-rest-service.yaml as follows:

apiVersion: v1
kind: Service
metadata:
name: jrio-rest
labels:
jrio.app: jrio-rest

spec:
type: LoadBalancer [or NodePort for Minikube]
ports:

JasperReports® IO At-Scale User Guide

23 | Configuring a Cluster in Kubernetes

- name: "8080"
port: {{ default 8080 .Values.jrioRest.servicePort }}
targetPort: 8080

selector:
jrio.app: jrio-rest

In this example, port 8080 is the port on which the service will listen for requests.

If you are deploying the demonstration app in the jrio-client module, make the same
change to the jrio-at-scale-3.0.0/k8s/helm/templates/jrio-client-service.yaml file.

Configuring Scalability
The scalability configuration defines how the cluster can scale up or down depending on
different metrics, usually memory and CPU usage.

The Kubernetes scheduler relies on data from the Metrics system server that is usually
installed manually in the Kubernetes cluster. The scheduler monitors the cluster nodes on
which the pods are running and sends aggregated values to the Kubernetes control plane.
These values are averages between pods and reported at 10 to 30 second intervals.
Therefore, the cluster sometimes does not react to an increased workload immediately, at
least not until the next metric reporting interval.

In order to scale up by starting a new pod, the Kubernetes control plane must know if
there are enough resources on the node where it can start the new pod. That is, it must
know if there is enough memory and CPU available for the memory and CPU requested by
the new pod. This is why each pod should have its resource requests and limits defined in
a deployment configuration file.

To configure scalability, set the resource requests and limits in the values.yaml file, as
described in Configuring the Helm Chart.

The cpuRequest and memoryRequest values are the minimum amount of resources for the
pod to start inside a node, and the cpuLimit and memoryLimit are the maximum that
Kubernetes can give to that pod. A pod will never get more resources than the *Limit
settings, but it is possible for it to use less than defined in the *Request settings. For more
information about resource usage, see the Kubernetes documentation.

Helm also has scalability settings in the following files, but Jaspersoft recommends using
the settings in values.yaml:

jrio-at-scale-3.0.0/k8s/helm/templates/jrio-<module>-deployment.yaml

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits

JasperReports® IO At-Scale User Guide

24 | Configuring a Cluster in Kubernetes

For example, the contents of the jrio-reporting-deployment.yaml file are as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
name: jrio-reporting
labels:
jrio.app: jrio-reporting

spec:
replicas: {{ default 2 .Values.jrioReporting.replicas }}
selector:
matchLabels:

jrio.app: jrio-reporting
template:
metadata:

labels:
jrio.app: jrio-reporting

spec:
containers:
- name: jrio-reporting
image: {{ default "jrio-reporting" .Values.jrioReporting.dockerImage}}:{{ required "The

.Values.jrioReporting.dockerTag is required!" .Values.jrioReporting.dockerTag }}
resources:
limits:
cpu: 1000m
memory: 1Gi

requests:
cpu: 500m
memory: 512Mi

restartPolicy: Always

JasperReports® IO At-Scale User Guide

25 | Deploying a Cluster in AWS EKS

Deploying a Cluster in AWS EKS
This chapter explains the entire process to deploy Jaspersoft IO At-Scale as a cluster on
Amazon Elastic Kubernetes Service (AWS EKS).

This chapter includes the following sections:

• Setting Up AWS EKS

• Enabling Autoscaling

• Setting up AWS ECR

• Deploying the Cluster

Setting Up AWS EKS
This section describes the tools and settings that you need to create a cluster resource on
Amazon Elastic Kubernetes Service (AWS EKS). It relies on the Amazon document “Getting
started with the AWS Management Console” located at:

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html

Open that document in a separate tab and refer to it when mentioned here.

Installing the AWS CLI
In order to create and interact with your cluster, you need an Amazon AWS account and
the tools to access the service. The AWS CLI is a command-line application to send
commands to your AWS resources.

Follow the instructions in the Amazon document to download and install the AWS CLI for
your platform (Linux, Mac, or Windows). When done, test the tool by invoking it with the --
version option.

root@/opt/jrs/jrio>aws --version
aws-cli/2.0.36 Python/3.7.4 Darwin/19.6.0 exe/x86_64

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html

JasperReports® IO At-Scale User Guide

26 | Deploying a Cluster in AWS EKS

Configuring AWS Credentials
In order for the AWS CLI tool to have access to your AWS resources, you must give it your
AWS Access Key and Secret Key. These can be found on the AWS website as follows:

1. Log into the AWS website either with your Federated User using your principal AWS
credentials or with your AWS access key and secret key.

2. Goto AWS Identity and Access Management (IAM), and acknowledge the warnings.

3. Click Users on the left, then select your username.

4. Select the Security Credentials Tab, and choose Create New Access Key.

Follow the instructions in the Amazon document to run the aws configure command and
enter the keys when prompted. The AWS CLI tool stores your input in its configuration files
located in the .aws folder:

root@/root/.aws>cat credentials
[default]
aws_access_key_id = <YOURACCESSKEYEXAMPLE>
aws_secret_access_key = <wJalrXUtnFEMI/K7MDENG/YOURSECRETKEYEXAMPLE>

root@/root/.aws>cat config
[default]
region = us-east-1
output = json

Installing kubectl
You also need the kubectl command-line tool to manage the Kubernetes cluster you will
deploy on AWS EKS. Follow the instructions in the Amazon document to download and
install the kubectl tool for your platform (Linux, Mac, or Windows).

Creating a Cluster Role
Using AWS Identity and Access Management (IAM), you need to create an IAM role that can
be passed to the Kubernetes cluster once it is deployed within AWS EKS. Kubernetes can
use this role to access other AWS services and perform actions on your behalf, for example
to start new nodes.

Follow the instructions in the Amazon document to create an IAM role for the cluster using
the AWS Management Console.

JasperReports® IO At-Scale User Guide

27 | Deploying a Cluster in AWS EKS

After you have created the role, you can configure the AWS CLI to use this role. Edit the
.aws/config file to add the Amazon Resource Name (ARN) for the role. In the following
example, the number 132456789000 is your 12-digit AWS user ID that appears in your AWS
resource names and URLs.

[default]
region = us-east-1
output = json
role_arn = arn:aws:iam::123456789000:role/eksClusterRole
source_profile = default

Verify that the role is being applied to your AWS CLI commands by running the following
command:

aws sts get-caller-identity

In the configuration above, the AWS CLI tool will use the cluster role for every command. If
you wish to use the tool with other services, you should define the role in a separate
profile that you use only with cluster commands. For more information, see the Amazon
guide for AWS CLI roles:

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html

Creating a Virtual Private Cloud
An AWS EKS cluster runs in a Virtual Private Cloud (VPC) with at least two subnets. In this
step, you will use Amazon CloudFormation to define and configure a VPC with its subnets.

Jaspersoft recommends having your JasperReports Server in a VPC with public access and
the Kubernetes cluster nodes in a private subnet. For more information, see Deploying
JasperReports Server.

Follow the instructions in the Amazon document to create a VPC with public and private
subnets for your Amazon EKS cluster.

Before you log out, look at the CloudFormation output tab and record the VPC ID, subnets
IDs, and security group ID that has ControlPlane in the name.

Creating the Cluster
When you create an AWS EKS cluster, you use the AWS cluster web console to define the
cluster parameters using the VPC created in the previous section. This step creates an

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html

JasperReports® IO At-Scale User Guide

28 | Deploying a Cluster in AWS EKS

empty cluster with Kubernetes, the images are pushed and depolyed in later steps.

Follow the instructions in the Amazon document to create your Amazon EKS cluster.

Use the following information during the procedure:

• Choose a name for your cluster, and be aware that it can't be changed later. The
examples in this guide use the name JRIOcluster.

• The cluster service role is the one created in Creating a Cluster Role, for example
eksClusterRole.

• No encryption is needed, click Next.

• Select the VPC ID that you recorded at the end of the previous section.

• Verify that all the subnet IDs from the previous section are included.

• Verify that the security group ID is the one from the previous section that includes
the control plane.

• The cluster enpoint access has been verified to work with the Public option. If you
prefer to make this private, you can experiment with setting a CIDR range or
selecting the Private option, but you may need further configuration.

• No logging or monitoring is needed.

• Cluster creation takes some time, wait until the status becomes Active.

Updating kubectl
Now that you have an active but empty AWS EKS cluster, connect your local kubectl tool to
the cluster. To do this, use the AWS CLI tool to create the kubeconfig file needed by the
kubectl tool.

Follow the instructions in the Amazon document to create a kubeconfig file.

The command uses the name of the cluster that you defined in the previous section, for
example:

aws eks --region us-east-1 update-kubeconfig --name JRIOcluster

Verify that the configuration works with the following command:

JasperReports® IO At-Scale User Guide

29 | Deploying a Cluster in AWS EKS

kubectl get svc

Create Compute
Now that you have an empty cluster defined, and a control plane to manage it, this step
defines the compute nodes that can be instantiated in the cluster.

Follow the instructions in the Amazon document to create compute with managed nodes.

Use the following information during the procedure:

• Create a role for the nodes in the IAM console as described. This document uses the
name EKSNodeInstanceRole.

• There is no need for a launch template.

• On the compute and scaling configuration page:

• AMI (Amazon Machine Image): the only supported option is Amazon Linux (Intel
based), not GPU nor ARM.

• Disk size: select the default.

• Node group scaling: specify reasonable values, they can be changed later.

• On the networking page, select all the subnets you defined in the VPC. Machines in
the same VPC are all able to see each other, but only the ones that have public
subnets will have access to the Internet.

• An SSH key pair is needed only if you want to ssh to one of the nodes. In most cases
this is not needed because the node lifecycle is managed via Kubernetes, and most
work can be performed using kubectl.

After you create the managed node group, wait until they are in the ready state, as given
by the following command:

kubectl get nodes --watch

JasperReports® IO At-Scale User Guide

30 | Deploying a Cluster in AWS EKS

Enabling Autoscaling
In order for the cluster to scale automatically based on load, it needs an autoscaler app
installed and metrics to know the state of each node. Each of these features is installed in
the following sections.

Installing the Cluster Autoscaler
The cluster autoscaler is an app that monitors utilization in the cluster and is authorized to
modify the node groups to fit the current load on your cluster.

This section relies on the Amazon document “Cluster Autoscaler” located at:

https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html

Open that document in a separate tab and apply it as follows:

1. Skip cluster creation using eksctl, because we already created our cluster.

2. Skip the node group IAM policy, because we already created the
EKSNodeInstanceRole.

3. The autoscaling group tags should already be defined, but it's best to verify them.

a. Open the AWS web console and locate your cluster.

b. Select your node group under your cluster.

c. Locate the autoscaling group created automatically for the node group.

d. Scroll down to Tags and confirm the following (where JRIOcluster is the cluster
name):

k8s.io/cluster-autoscaler/JRIOcluster owned

k8s.io/cluster-autoscaler/enabled true

4. Perform all steps in the section “Deploy the Cluster Autoscaler” of the Amazon
document. At the time of publication, the latest version of the autoscaler is 1.7.3,
giving the final command as follows:

kubectl -n kube-system set image deployment.apps/cluster-autoscaler
cluster-autoscaler=us.gcr.io/k8s-artifacts-prod/autoscaling/cluster-autoscaler:v1.17.3

https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html

JasperReports® IO At-Scale User Guide

31 | Deploying a Cluster in AWS EKS

Deploying the Kubernetes Metrics Server
The metrics server is needed to monitor the Kubernetes cluster and collect metrics from
each node. The autoscaler uses these metrics to determine node utilization and trigger
scaling the node group up or down. You must deploy the metrics server when using the
autoscaler.

The metrics server is installed using the kubectl tool as follows:

1. Run to following command to check if the metrics server is already installed:

kubectl get deployment metrics-server -n kube-system

2. If it's not already deployed, deploy the metrics server with the following command:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/download/v0.3.6/components.yaml

3. Run the first command again to verify that the metrics server is installed:

kubectl get deployment metrics-server -n kube-system

NAME READY UP-TO-DATE AVAILABLE AGE
metrics-server 1/1 1 1 4m

This section is based in part on the Amazon document “Tutorial: Deploy the Kubernetes
Dashboard (web UI)” located at:

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

If you want to install the dashboard application to have a graphical view of your cluster,
follow the remaining steps in that document.

Setting up AWS ECR
This deployment of Jaspersoft IO At-Scale modules uses the Amazon Elastic Container
Registry (AWS ECR) to hold the container images. This section covers the steps for
uploading your docker images to AWS ECR.

Before proceeding, make sure you have fully configured your modules and have built the final
images, as described in Building Docker Images.

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

JasperReports® IO At-Scale User Guide

32 | Deploying a Cluster in AWS EKS

1. Open the Amazon ECR web console at
https://console.aws.amazon.com/ecr/repositories and create one repository for each
image you want to upload. Usually, the repositories have the same name as the
corresponding modules:

• jrio-manager

• jrio-reporting

• jrio-export

• jrio-rest

• jrio-client (optional)

After creating each repository, record the URL that is given for accessing it, for example:

123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-manager

2. Starting with the first module, in this case jrio-manager, perform the Docker login to
its AWS ECR repository with the following command:

aws ecr get-login-password --region us-east-1 | docker login --username AWS
--password-stdin 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-manager

The login is valid for over an hour, giving you time to perform the following steps. If you
are interrupted, you may need to perform the Docker login command again.

3. Find the Docker ID of that module's image:

docker images | grep jrio-manager
jrio-manager 3.0 57cbe0cd4e9f 2 days ago 320MB

4. Use that Docker ID and tag it to the corresponding AWS ECR repository with the
following command:

docker tag 57cbe0cd4e9f 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-manager:1.8.0-redis

You can give your Docker images a tag such as 1.8.0-redis in this example, but you will
need this tag during installation as well.

5. Push the selected image to the AWS ECR repository with the following command:

docker push 123456789000.dkr.ecr.us-east-1.amazonaws.com/jrio-manager:1.8.0-redis

https://console.aws.amazon.com/ecr/repositories

JasperReports® IO At-Scale User Guide

33 | Deploying a Cluster in AWS EKS

6. Repeat these steps for each of the modules in order to login, tag, and push each
image to its corresponding AWS ECR repository.

Deploying the Cluster
Now that everything is configured, the cluster has been created with a node group, and the
images have been pushed to the ECR repository, we can finally start the cluster. This will
instantiate nodes from the corresponding images according to the number of machines in
the virtual private cloud.

Before proceeding, make sure you have fully configured your Helm chart (values.yaml) and other
cluster configuration files, as described in Configuring a Cluster in Kubernetes.

1. If you have not already done so, install the helm command-line app to run helm
commands. You can download binaries or use package managers as described in
https://helm.sh/docs/intro/install/.

2. Go to the home directory of the Jaspersoft IO At-Scale distribution, by default jrio-at-
scale-3.0.0/ where the k8s folder is located, and run the following command:

helm install JRIOcluster ./k8s/helm

Where JRIOcluster is the name of your AWS EKS cluster.

3. Verify that the cluster was deployed with the following command:

helm list

4. Then verify that all the nodes have started successfully:

https://helm.sh/docs/intro/install/

JasperReports® IO At-Scale User Guide

34 | Deploying a Cluster in AWS EKS

root@/opt> kubectl get all
NAME READY STATUS RESTARTS AGE
pod/jrio-client-88cc9485c-cjj5v 1/1 Running 0 68s
pod/jrio-export-859b6dd55f-xnspz 1/1 Running 0 68s
pod/jrio-manager-ccb7bf45d-qwkvb 1/1 Running 0 68s
pod/jrio-reporting-66b7d7f74-7628p 1/1 Running 0 68s
pod/jrio-rest-5475ddb958-cl5vq 1/1 Running 0 68s
pod/redis-7c676c6-5qczq 1/1 Running 0 68s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service/jrio-client NodePort 10.100.235.226 <none> 8080:32629/TCP
service/jrio-rest LoadBalancer 10.100.11.180 [see below] 8080:31946/TCP
service/kubernetes ClusterIP 10.100.0.1 <none> 443/TCP
service/redis ClusterIP 10.100.169.121 <none> 6379/TCP

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/jrio-client 1/1 1 1 68s
deployment.apps/jrio-export 1/1 1 1 68s
deployment.apps/jrio-manager 1/1 1 1 68s
deployment.apps/jrio-reporting 1/1 1 1 68s
deployment.apps/jrio-rest 1/1 1 1 68s
deployment.apps/redis 1/1 1 1 68s

NAME DESIRED CURRENT READY AGE
replicaset.apps/jrio-client-88cc9485c 1 1 1 68s
replicaset.apps/jrio-export-859b6dd55f 1 1 1 68s
replicaset.apps/jrio-manager-ccb7bf45d 1 1 1 68s
replicaset.apps/jrio-reporting-66b7d7f74 1 1 1 68s
replicaset.apps/jrio-rest-5475ddb958 1 1 1 68s
replicaset.apps/redis-7c676c6 1 1 1 68s

After the cluster has been deployed, the only service with an external IP hostname is the
jrio-rest service of type LoadBalancer. On AWS it takes some time, you may need to wait a
few minutes before the hostname appears, for example:

a073e3faaa4b341c4ac637f6529bc45a-1698884248.us-east-1.elb.amazonaws.com on port
8080

5. Finally, the load balancer security group has to be configured to allow incoming
traffic from the JasperReports Server instance or from any other machine. Note that
this will work properly only when a single AWS Avalability Zone is configured; for
multi-AZ another load balancer type should be used in the AWS EKS config. To
enable incoming traffic:

a. In your AWS console, go to EC2 > Load Balancers and find your load balancer. It
will have the same name as the exposed kubernetes service.

b. Select the load balancer, and locate the source security group in its description.
Write down the ID of this group.

c. In the AWS console again, go to Security Groups, and find the security group with
that ID. It should also have k8s-elb in its name.

d. Edit the Inbound rules for that security group, and open the port (8080 in this
example) for your server insance or any other machine.

JasperReports® IO At-Scale User Guide

35 | Deploying a Cluster in AWS EKS

Deploying JasperReports Server
This section describes how to connect a JasperReports Server instance with Jaspersoft
IO At-Scale so that the server uses the JRIO At-Scale cluster as a scalable reporting engine.
Because JRIO creates its own database connections using JDBC, this works only for reports
that have a JDBC data source, not JNDI or other data sources.

1. If you have a Private setup for AWS EKS, then your JasperReports Server has to be
placed into the same VPC as AWS EKS. Jaspersoft also recommends doing so in
public cases too. Assuming your VPC was created by cloud formation scrips as
described in Creating a Virtual Private Cloud, create a new EC2 instance in AWS EKS
VPC for your JasperReports Server. Be sure to use a static IP address assigned to the
JasperReports Server instance because that address must be specified in the module
configuration before creating Docker images. For JasperReports Server in a clustered
setup, configure a static IP address for the load balancer.

2. Make sure your JRIO At-Scale cluster does not include the jrio-client module and is
configured to use the JasperReports Server instance, as described in Connecting to a
JasperReports Server Repository.

3. After the server has been deployed, edit the following file:

File /tomcat9/webapps/js.config.properties

Property jrio.url

Example jrio.url=http://192.168.189.2:30030/jrio

4. If your JRIO At-Scale cluster handles high throughput, the server's event logging of
every repository access may slow down your pods and become a bottleneck. In this
case, disable event logging as follows:

File jasperserver-pro/WEB-INF/applicationContext-events-logging.xml

Bean ID loggingContextProvider

Property <entry key="com.jaspersoft.jasperserver.api.logging.access.domain.AccessEvent"
value="false"/>

5. For JasperReports Server in a clustered setup, repeat this procedure for each
instance.

JasperReports® IO At-Scale User Guide

36 | Deploying a Cluster in AWS EKS

Deploying Your Database
Jaspersoft IO At-Scale creates its own connections to the database containing your
reporting data. Even when using the JasperReports Server repository, JRIO At-Scale
accesses only the metadata for JDBC data sources in order to create its own connections.
This JDBC datasource must be accessible from inside the JRIO AtScale cluster and JRS
instance.

Jaspersoft recommends putting the database into the same VPC as the JRIO At-Scale
cluster, whether it is a database deployed on-premise or in the cloud, such as Amazon
Relational Database Service (RDS). In the case of RDS, you should update the RDS database
security group as required, so that JRIO At-Scale and JasperReports Server will be able to
run queries against the database.

JasperReports® IO At-Scale User Guide

37 | Cloud Repositories for Jaspersoft IO At-Scale

Cloud Repositories for Jaspersoft IO At-Scale
This chapter describes how Jaspersoft IO At-Scale can use reports and resources stored in
the cloud repositories (Google Drive, Github, and Dropbox) using OAuth 2.0 standard
protocol for authorization.

OAuth2 Repositories
By default, Jaspersoft IO At-Scale comes with three preconfigured OAuth2 repositories for
Google Drive, Github, and Dropbox. Each of these is defined in the following folders:

jrio-export-docker/jrio/applicationContext-google-drive.xml

jrio-export-docker/jrio/applicationContext-github.xml

[jrio-export-docker/jrio/applicationContext-dropbox.xml

jrio-reporting-docker/jrio/applicationContext-google-drive.xml

jrio-reporting-docker/jrio/applicationContext-github.xml

jrio-reporting-docker/jrio/applicationContext-dropbox.xml

jrio-rest-docker/jrio/WEB-INF/applicationContext-google-drive.xml

jrio-rest-docker/jrio/WEB-INF/applicationContext-github.xml

jrio-rest-docker/jrio/WEB-INF/applicationContext-dropbox.xml

To use these repositories, each repository configuration file needs to be updated with
actual clientId and secretKey values. These values are obtained from the target cloud
storage providers while registering your Jaspersoft IO At-Scale instance with them.

The configuration file for Google Drive repository will appear similar to the following:

<bean class="com.jaspersoft.jrio.common.repository.google.GoogleDriveRepositoryService">
<property name="jasperReportsContext" ref="baseJasperReportsContext"/>
<property name="googleDriveProvider">

<bean class="com.jaspersoft.jrio.common.repository.google.RequestTokenGoogleDriveProvider">
<property name="googleDriveFactory">

JasperReports® IO At-Scale User Guide

38 | Cloud Repositories for Jaspersoft IO At-Scale

<bean class="com.jaspersoft.jrio.common.repository.google.GoogleDriveFactory">
<property name="clientId" value="put-client-id-here"/>
<property name="secretKey" value="put-secret-key-here"/>

</bean>
</property>
<property name="serviceCache">

<bean class="com.jaspersoft.jrio.common.execution.cache.LocalCacheAccessFactory">
<property name="cacheContainer" ref="localCacheManager"/>
<property name="cacheRegion" value="googleDriveServices"/>

</bean>
</property>

</bean>
</property>

</bean>

Accessing Cloud Repositories
The sample web application helps you connect to the cloud repositories (Google Drive,
Github, and Dropbox) by providing a login UI. You can access the sample cloud repository
login UI if you have the required OAuth2 credentials, namely clientId and secretKey. These
values need to specify in both repository configuration files and client application
configuration file [JRIO_DOCS_WEB_APP]/WEB-INF/classes/jasperreports.properties.

The sample web application acts as a proxy to the Jaspersoft IO At-Scale application and
acquires the OAuth2 authorization tokens from the cloud services. Then these access
tokens are passed to the Jaspersoft IO At-Scale, allowing Jaspersoft IO At-Scale to load
reporting resources from the remote repositories.

JasperReports® IO At-Scale User Guide

39 | Jaspersoft Documentation and Support Services

Jaspersoft Documentation and Support
Services
For information about this product, you can read the documentation, contact Support, and
join Jaspersoft Community.

How to Access Jaspersoft Documentation

Documentation for Jaspersoft products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the JasperReports® IO At-Scale Product
Documentation page.

How to Access Related Third-Party Documentation

When working with JasperReports® IO At-Scale, you may find it useful to read the
documentation of the following third-party products:

How to Contact Support for Jaspersoft Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

https://community.jaspersoft.com/documentation/
https://community.jaspersoft.com/documentation/
https://community.jaspersoft.com/documentation/
https://community.jaspersoft.com/documentation/
https://www.jaspersoft.com/support
https://www.jaspersoft.com/support

JasperReports® IO At-Scale User Guide

40 | Jaspersoft Documentation and Support Services

How to Join Jaspersoft Community

Jaspersoft Community is the official channel for Jaspersoft customers, partners, and
employee subject matter experts to share and access their collective experience. Jaspersoft
Community offers access to Q&A forums, product wikis, and best practices. It also offers
access to extensions, adapters, solution accelerators, and tools that extend and enable
customers to gain full value from Jaspersoft products. In addition, users can submit and
vote on feature requests from within the Jaspersoft Ideas Portal. For a free registration, go
to Jaspersoft Community.

https://jaspersoftideas.tibco.com/
https://community.jaspersoft.com/

JasperReports® IO At-Scale User Guide

41 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

Jaspersoft, JasperReports, Visualize.js, and TIBCO are either registered trademarks or trademarks of
Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

JasperReports® IO At-Scale User Guide

42 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2005-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction
	Building Docker Images
	Jaspersoft IO At-Scale Modules
	Configuring the Modules
	Installing the License File
	Using the Standalone Repository
	Connecting to a JasperReports Server Repository
	Setting JasperReports Properties
	Configuring Logging
	Setting Concurrent Threads

	Using a Local Repository
	Using a Redis Cluster
	Deploying a Redis Cluster
	Configuring JRIO Modules for a Redis Cluster
	Configuring JRIO Helm Chart for a Redis Cluster

	Building Docker Images

	Configuring a Cluster in Kubernetes
	Configuring the Helm Chart
	Minikube on Docker VM

	Configuring Services
	Configuring Scalability

	Deploying a Cluster in AWS EKS
	Setting Up AWS EKS
	Installing the AWS CLI
	Configuring AWS Credentials
	Installing kubectl
	Creating a Cluster Role
	Creating a Virtual Private Cloud
	Creating the Cluster
	Updating kubectl
	Create Compute

	Enabling Autoscaling
	Installing the Cluster Autoscaler
	Deploying the Kubernetes Metrics Server

	Setting up AWS ECR
	Deploying the Cluster
	Deploying JasperReports Server
	Deploying Your Database

	Cloud Repositories for Jaspersoft IO At-Scale
	OAuth2 Repositories
	Accessing Cloud Repositories

	Jaspersoft Documentation and Support Services
	Legal and Third-Party Notices

